• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1851. Summing Sums 的三種巧妙解法

            Summing Sums

            Time Limit:1000MSMemory Limit:30000KB
            Total Submit:408Accepted:86

            Description

            The N (1 <= N <= 50,000) cows, conveniently numbered 1..N, are trying to learn some encryption algorithms. After studying a few examples, they have decided to make one of their own! However, they are not very experienced at this, so their algorithm is very simple:
            Each cow i is given a starting number C_i (0 <= C_i < 90,000,000),and then all the cows perform the following process in parallel:
            * First, each cow finds the sum of the numbers of the other N-1 cows.
            * After all cows are finished, each cow replaces her number with the sum she computed. To avoid very large numbers, the cows will keep track of their numbers modulo 98,765,431.

            They told Canmuu the moose about it in November; he was quite impressed.

            Then one foggy Christmas Eve, Canmuu came to say:
            "Your algorithm is too easy to break! You should repeat it T(1 <= T <= 1,414,213,562) times instead."

            Obviously, the cows were very frustrated with having to perform so many repetitions of the same boring algorithm, so after many hours of arguing, Canmuu and the cows reached a compromise: You are to calculate the numbers after the encryption is performed!

            *Some extra feedback will be provided for the first 10 submissions to this problem.

            Input

            * Line 1: Two space-separated integers: N and T
            * Lines 2..N+1: Line i+1 contains a single integer: C_i

            Output

            * Lines 1..N: Line i contains a single integer representing the number of cow i (modulo 98,765,431) at the end of the encryption.

            Sample Input

            3 4
            1
            0
            4

            INPUT DETAILS:
            Three cows, with starting numbers 1, 0, and 4; four repetitions of the encryption algorithm.

            Sample Output

            26
            25
            29

            OUTPUT DETAILS:
            The following is a table of the cows' numbers for each turn:Cows' numbers


            Turn Cow1 Cow2 Cow3
            0 1 0 4
            1 4 5 1
            2 6 5 9
            3 14 15 11
            4 26 25 29

             

            Source

            usaco 07CHN



            ----------------------------------------------------------------------------------------
            解法一:

            令 cs = c[1] + c[2] + ... + c[n-1] + c[n];
            令 a[t][i] = 處理 t 次后的c[i];
            令 s[t] = a[t][1]+a[t][2]+a[t][3] + … + a[t][n]


            t = 0 時,
            s[0] = cs = (n-1)^0 * cs
            a[0][i] = c[i]


            t = 1 時,
            s[1] = (n-1)*s[0] = (n-1)^1  * cs
            a[1][i] = s[0] – a[0][i] = (n-1)^0 * cs – c[i]


            t = 2 時,
            s[2] = (n-1)*s[1] = (n-1)^2  * cs
            a[2][i] = s[1] – a[1][i] = ((n-1)^1-(n-1)^0)*cs + c[i]

            t = 3 時,
            s[3] = (n-1)*s[2] = (n-1)^3  * cs
            a[3][i] = s[2] – a[2][i] = ((n-1)^2 – (n-1)^1 + (n-1)^0) * cs – c[i]


            結論:

            a[t][i] = [ (n-1)^(t-1) – (n-1)^(t-2) + (n-1)^(t-3) - … (n-1) ^ 0 ] * cs  +  (-1)^t * c[i]


            令 ns = (n-1)^(t-1) - (n-1)^(t-2) + (n-1)^(t-3) - (n-1)^(t-4) ... (n-1)^(0)


            則 a[t][i] = ns * cs + (-1)^t * c[i]



            求 ns 時,使用二分法,求等比數列的和。


            解法一代碼




            ----------------------------------------------------------------------------------------
            解法二:

            分析同上,只是
            求 ns 時,使用等比數列求和公式。

            對于除法之后再取余的問題,zyd 教了我一個技巧。

            解法二代碼




            ----------------------------------------------------------------------------------------
            解法三:

            模擬實際的變換過程,但是通過二分法加速。

            構造矩陣


            A =

            [ -1   1  ]
            |         |
            [ 0   n-1 ]

             

            [ Ci ]          [ Ci ]
            |    | = A^t  * |    |
            [ CS ]          [ CS ]


            其中,A^t 可以二分。


             

            posted on 2012-02-29 16:46 coreBugZJ 閱讀(604) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內作業

            99久久精品免费国产大片| 久久99毛片免费观看不卡| 久久久久久青草大香综合精品| 色8久久人人97超碰香蕉987| 久久精品aⅴ无码中文字字幕不卡| 亚洲国产高清精品线久久| 国产精品亚洲综合久久 | 久久A级毛片免费观看| 日本人妻丰满熟妇久久久久久| 97精品国产91久久久久久| 91久久香蕉国产熟女线看| 蜜桃麻豆www久久国产精品| 伊人久久精品影院| 99久久精品毛片免费播放| 亚洲国产成人久久笫一页| 国产亚洲精久久久久久无码| 国产无套内射久久久国产| 伊人久久大香线焦AV综合影院 | 亚洲AV日韩AV永久无码久久| 97久久综合精品久久久综合| 久久乐国产精品亚洲综合| 中文国产成人精品久久不卡| 国产精品免费久久久久电影网| 一本一道久久综合狠狠老| 国产日韩久久久精品影院首页 | 久久国产精品-久久精品| 欧美性大战久久久久久| 精品久久香蕉国产线看观看亚洲| 亚洲国产高清精品线久久| 国产亚洲婷婷香蕉久久精品| 精品多毛少妇人妻AV免费久久 | 久久婷婷五月综合成人D啪| 久久精品国产免费一区| 亚洲欧洲日产国码无码久久99| 久久无码人妻精品一区二区三区| 久久无码av三级| 国内精品久久久人妻中文字幕| 日韩人妻无码一区二区三区久久99 | 亚洲国产成人精品91久久久| 久久久久久狠狠丁香| 久久91精品国产91久久户|