• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1851. Summing Sums 的三種巧妙解法

            Summing Sums

            Time Limit:1000MSMemory Limit:30000KB
            Total Submit:408Accepted:86

            Description

            The N (1 <= N <= 50,000) cows, conveniently numbered 1..N, are trying to learn some encryption algorithms. After studying a few examples, they have decided to make one of their own! However, they are not very experienced at this, so their algorithm is very simple:
            Each cow i is given a starting number C_i (0 <= C_i < 90,000,000),and then all the cows perform the following process in parallel:
            * First, each cow finds the sum of the numbers of the other N-1 cows.
            * After all cows are finished, each cow replaces her number with the sum she computed. To avoid very large numbers, the cows will keep track of their numbers modulo 98,765,431.

            They told Canmuu the moose about it in November; he was quite impressed.

            Then one foggy Christmas Eve, Canmuu came to say:
            "Your algorithm is too easy to break! You should repeat it T(1 <= T <= 1,414,213,562) times instead."

            Obviously, the cows were very frustrated with having to perform so many repetitions of the same boring algorithm, so after many hours of arguing, Canmuu and the cows reached a compromise: You are to calculate the numbers after the encryption is performed!

            *Some extra feedback will be provided for the first 10 submissions to this problem.

            Input

            * Line 1: Two space-separated integers: N and T
            * Lines 2..N+1: Line i+1 contains a single integer: C_i

            Output

            * Lines 1..N: Line i contains a single integer representing the number of cow i (modulo 98,765,431) at the end of the encryption.

            Sample Input

            3 4
            1
            0
            4

            INPUT DETAILS:
            Three cows, with starting numbers 1, 0, and 4; four repetitions of the encryption algorithm.

            Sample Output

            26
            25
            29

            OUTPUT DETAILS:
            The following is a table of the cows' numbers for each turn:Cows' numbers


            Turn Cow1 Cow2 Cow3
            0 1 0 4
            1 4 5 1
            2 6 5 9
            3 14 15 11
            4 26 25 29

             

            Source

            usaco 07CHN



            ----------------------------------------------------------------------------------------
            解法一:

            令 cs = c[1] + c[2] + ... + c[n-1] + c[n];
            令 a[t][i] = 處理 t 次后的c[i];
            令 s[t] = a[t][1]+a[t][2]+a[t][3] + … + a[t][n]


            t = 0 時,
            s[0] = cs = (n-1)^0 * cs
            a[0][i] = c[i]


            t = 1 時,
            s[1] = (n-1)*s[0] = (n-1)^1  * cs
            a[1][i] = s[0] – a[0][i] = (n-1)^0 * cs – c[i]


            t = 2 時,
            s[2] = (n-1)*s[1] = (n-1)^2  * cs
            a[2][i] = s[1] – a[1][i] = ((n-1)^1-(n-1)^0)*cs + c[i]

            t = 3 時,
            s[3] = (n-1)*s[2] = (n-1)^3  * cs
            a[3][i] = s[2] – a[2][i] = ((n-1)^2 – (n-1)^1 + (n-1)^0) * cs – c[i]


            結論:

            a[t][i] = [ (n-1)^(t-1) – (n-1)^(t-2) + (n-1)^(t-3) - … (n-1) ^ 0 ] * cs  +  (-1)^t * c[i]


            令 ns = (n-1)^(t-1) - (n-1)^(t-2) + (n-1)^(t-3) - (n-1)^(t-4) ... (n-1)^(0)


            則 a[t][i] = ns * cs + (-1)^t * c[i]



            求 ns 時,使用二分法,求等比數列的和。


            解法一代碼




            ----------------------------------------------------------------------------------------
            解法二:

            分析同上,只是
            求 ns 時,使用等比數列求和公式。

            對于除法之后再取余的問題,zyd 教了我一個技巧。

            解法二代碼




            ----------------------------------------------------------------------------------------
            解法三:

            模擬實際的變換過程,但是通過二分法加速。

            構造矩陣


            A =

            [ -1   1  ]
            |         |
            [ 0   n-1 ]

             

            [ Ci ]          [ Ci ]
            |    | = A^t  * |    |
            [ CS ]          [ CS ]


            其中,A^t 可以二分。


             

            posted on 2012-02-29 16:46 coreBugZJ 閱讀(604) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm 、課內作業

            97久久精品无码一区二区| 91久久精品国产免费直播| 久久av免费天堂小草播放| 久久九色综合九色99伊人| 女同久久| 国内精品久久人妻互换| 久久国产精品无码一区二区三区 | www久久久天天com| 国产一区二区三区久久精品| 久久久久亚洲AV无码专区网站| 久久这里有精品视频| 亚洲va国产va天堂va久久| 国产精品久久久久久久| 久久e热在这里只有国产中文精品99 | 国产亚洲精久久久久久无码AV| 久久亚洲精品无码aⅴ大香| 久久不见久久见免费视频7| 久久精品中文字幕有码| 日韩精品无码久久久久久| 久久嫩草影院免费看夜色| AV无码久久久久不卡蜜桃| 亚洲性久久久影院| 精品久久久久久无码人妻蜜桃 | 久久久久99精品成人片三人毛片 | 伊人久久大香线蕉亚洲五月天| 久久综合狠狠色综合伊人| 国内精品久久久久影院薰衣草| 久久久久国产一区二区| 久久线看观看精品香蕉国产| 亚洲国产精品一区二区久久hs| 一级女性全黄久久生活片免费| 国产高清国内精品福利99久久| 久久国产精品成人影院| 亚洲伊人久久精品影院| 久久久精品国产| 久久精品国产男包| 综合久久一区二区三区| 久久久久亚洲国产| 漂亮人妻被中出中文字幕久久| 亚洲精品高清一二区久久| 色综合久久88色综合天天 |