• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            Hwh’s Problem, FZU 2011年3月月賽之 H, FZU 2017

            Problem 2017 Hwh’s Problem

            Accept: 11    Submit: 20
            Time Limit: 5000 mSec    Memory Limit : 32768 KB

            Problem Description

            Polynomial is an expression of more than two algebraic terms, esp. the sum of several terms that contain different powers of the same variable(s).

            For example, G( p ) = 7 + 6g^1 + 2g^2 + 0g^3 + 113g^4 is an expression.

            Hwh is one “SB” ( short for “ShenBen” ) and he always love math!In this problem, you are expected to calculate the coefficients of the polynomial S(g) = G(p)^m, here m is an integer larger than zero.

            For example, G(p) = 3 + 2g^1 , and m = 2, then S(g) = 4g^2 + 12g + 9, so the coefficients of S(g) are {4, 12, 9}; G(p) = 3 + 2g^1 , and m = 3, then S(g) = 8g^3 + 36g^2 + 54g + 27, so the coefficients of S(g) are { 8, 36, 54, 27 }.

            The coefficients may be so large, so hwh wants to know the coefficients (mod 211812353).

            Input

            In the first line one integer T indicates the number of test cases. (T <= 1000)

            For every case, two integers n and m in a single line, indicate the number of element of the G(p) and the value of m. (2 <= n <= 10^5, 1 <= m <= 50000, n * m <= 10^5)

            Then one line has n integers Ki, indicates the i-th coefficient of G(p). (0 <= Ki <= 10^9)

            Output

            For each test case, output (n – 1)*m + 1 lines, the i-th (i >= 0) line output “[i] = ci”, where ci is the coefficient of g^i in S(g)

            Output one blank line after each test case.

            Sample Input

            2
            2 2
            3 2
            2 3
            3 2

            Sample Output

            [0] = 9
            [1] = 12
            [2] = 4

            [0] = 27
            [1] = 54
            [2] = 36
            [3] = 8

            Source

            FOJ有獎(jiǎng)月賽-2011年03月


            全整數(shù) FFT 加速整系數(shù)多項(xiàng)式乘法,不能僅僅套模板,需要對(duì) FFT 有一點(diǎn)點(diǎn)理解。。。

            1953ms 1796KB

              1 #include <iostream>
              2 #include <cstdio>
              3 
              4 using namespace std;
              5 
              6 template< int L, class T = intclass LT = long long >
              7 class  FFT
              8 {
              9 public : 
             10         FFT() {
             11                 p = -1;
             12         }
             13         void fft( T e[], int &m, int minL ) {
             14                 in( e, m, minL );
             15                 m = n;
             16                 fft();
             17                 out( e );
             18         }
             19         void ifft( T e[], int &m, int minL ) {
             20                 in( e, m, minL );
             21                 m = n;
             22                 ifft();
             23                 out( e );
             24         }
             25         T getP() {
             26                 return p;
             27         }
             28 
             29 public : 
             30         static int isPrime( T x ) {
             31                 T i;
             32                 if ( x < 2 ) {
             33                         return 0;
             34                 }
             35                 /* overflow !! */
             36                 for ( i = 2; (LT)i*<= x; ++i ) {
             37                         if ( x % i == 0 ) {
             38                                 return 0;
             39                         }
             40                 }
             41                 return 1;
             42         }
             43         static T powMod( T a, T b, T c ) {
             44                 T ans = 1;
             45                 a %= c;
             46                 while ( b > 0 ) {
             47                         if ( b & 1 ) {
             48                                 ans = ( (LT)ans * a ) % c;
             49                         }
             50                         a = ( (LT)a * a ) % c;
             51                         b >>= 1;
             52                 }
             53                 return ans;
             54         }
             55 
             56 private : 
             57         /* p is a prime number */
             58         int isG( T g, T p ) {
             59                 T p0 = p - 1, i;
             60                 for ( i = 1; (LT)i*<= p0; ++i ) {
             61                         if ( p0 % i == 0 ) {
             62                                 if ( (powMod(g,i,p)==1&& (i<p0) ) {
             63                                         return 0;
             64                                 }
             65                                 if ( (powMod(g,p0/i,p)==1&& (p0/i<p0) ) {
             66                                         return 0;
             67                                 }
             68                         }
             69                 }
             70                 return 1;
             71         }
             72         int rev_bit( int i ) {
             73                 int j = 0, k;
             74                 for ( k = 0; k < bit; ++k ) {
             75                         j = ( (j<<1)|(i&1) );
             76                         i >>= 1;
             77                 }
             78                 return j;
             79         }
             80         void reverse() {
             81                 int i, j;
             82                 T t;
             83                 for ( i = 0; i < n; ++i ) {
             84                         j = rev_bit( i );
             85                         if ( i < j ) {
             86                                 t = a[ i ];
             87                                 a[ i ] = a[ j ];
             88                                 a[ j ] = t;
             89                         }
             90                 }
             91         }
             92         void in( T e[], int m, int minL ) {
             93                 int i;
             94                 bit = 0;
             95                 while ( (1<<(++bit)) < minL )
             96                         ;
             97                 n = (1<<bit);
             98                 for ( i = 0; i < m; ++i ) {
             99                         a[ i ] = e[ i ];
            100                 }
            101                 for ( i = m; i < n; ++i ) {
            102                         a[ i ] = 0;
            103                 }
            104                 if ( p < 0 ) {
            105                         init( 21211812353 );
            106                 }
            107         }
            108         // lim2 >= bit
            109         void init( int lim2, T minP ) {
            110                 T k = 2, ig = 2;
            111                 int i;
            112                 do {
            113                         ++k;
            114                         p = ( (k<<lim2) | 1 );
            115                 } while ( (p<minP) || (!isPrime(p)) );
            116                 while ( !isG(ig,p) ) {
            117                         ++ig;
            118                 }
            119                 for ( i = 0; i < bit; ++i ) {
            120                         g[ i ] = powMod( ig, (k<<(lim2-bit+i)), p );
            121                 }
            122         }
            123         void fft() {
            124                 T w, wm, u, t;
            125                 int s, m, m2, j, k;
            126                 reverse();
            127                 for ( s = bit-1; s >= 0--s ) {
            128                         m2 = (1<<(bit-s));
            129                         m = (m2>>1);
            130                         wm = g[ s ];
            131                         for ( k = 0; k < n; k += m2 ) {
            132                                 w = 1;
            133                                 for ( j = 0; j < m; ++j ) {
            134                                         t = ((LT)(w)) * a[k+j+m] % p;
            135                                         u = a[ k + j ];
            136                                         a[ k + j ] = ( u + t ) % p;
            137                                         a[ k + j + m ] = ( u + p - t ) % p;
            138                                         w = ( ((LT)w) * wm ) % p;
            139                                 }
            140                         }
            141                 }
            142         }
            143         void ifft() {
            144                 T w, wm, u, t, inv;
            145                 int s, m, m2, j, k;
            146                 reverse();
            147                 for ( s = bit-1; s >= 0--s ) {
            148                         m2 = (1<<(bit-s));
            149                         m = (m2>>1);
            150                         wm = powMod( g[s], p-2, p );
            151                         for ( k = 0; k < n; k += m2 ) {
            152                                 w = 1;
            153                                 for ( j = 0; j < m; ++j ) {
            154                                         t = ((LT)(w)) * a[k+j+m] % p;
            155                                         u = a[ k + j ];
            156                                         a[ k + j ] = ( u + t ) % p;
            157                                         a[ k + j + m ] = ( u + p - t ) % p;
            158                                         w = ( ((LT)w) * wm ) % p;
            159                                 }
            160                         }
            161                 }
            162                 inv = powMod( n, p-2, p );
            163                 for ( k = 0; k < n; ++k ) {
            164                         a[ k ] = ( ((LT)inv) * a[ k ] ) % p;
            165                 }
            166         }
            167         void out( T e[] ) {
            168                 int i;
            169                 for ( i = 0; i < n; ++i ) {
            170                         e[ i ] = a[ i ];
            171                 }
            172         }
            173 
            174         T a[ L ], g[ 100 ], p;
            175         int n, bit;
            176 };
            177 
            178 
            179 #define  L  200009
            180 typedef  long long Lint;
            181 
            182 FFT< L, int, Lint > fft;
            183 
            184 int a[ L ];
            185 
            186 int main() {
            187         int td, n, m, t, i, p;
            188         scanf( "%d"&td );
            189         while ( td-- > 0 ) {
            190                 scanf( "%d%d"&n, &m );
            191                 for ( i = 0; i < n; ++i ) {
            192                         scanf( "%d", a+i );
            193                 }
            194                 t = (n-1)*+ 1;
            195                 fft.fft( a, n, t );
            196                 p = fft.getP();
            197                 for ( i = 0; i < n; ++i ) {
            198                         a[ i ] = fft.powMod( a[ i ], m, p );
            199                 }
            200                 fft.ifft( a, n, n );
            201                 for ( i = 0; i < t; ++i ) {
            202                         printf( "[%d] = %d\n", i, a[ i ] );
            203                 }
            204                 printf( "\n" );
            205         }
            206         return 0;
            207 }
            208 


            posted on 2011-04-05 22:37 coreBugZJ 閱讀(1159) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM

            久久精品国产91久久综合麻豆自制| 人人狠狠综合久久亚洲高清| 久久狠狠爱亚洲综合影院| 无码久久精品国产亚洲Av影片 | 久久久久久久久久久久中文字幕| 99精品久久久久久久婷婷| 99久久免费国产特黄| 久久综合综合久久狠狠狠97色88 | 99re久久精品国产首页2020| 国产精品永久久久久久久久久| 久久天天躁狠狠躁夜夜2020一| 精品国产福利久久久| 蜜桃麻豆WWW久久囤产精品| …久久精品99久久香蕉国产| 怡红院日本一道日本久久| 四虎久久影院| 久久精品国产国产精品四凭| 国产精品无码久久综合| 国产偷久久久精品专区| 久久综合久久性久99毛片| 久久精品草草草| 久久久无码一区二区三区| 久久人人爽人人人人爽AV| 久久久青草青青国产亚洲免观| 久久精品免费一区二区三区| 久久久久无码精品国产| 久久久久久久久久久| 久久中文字幕人妻熟av女| 欧美久久亚洲精品| 久久精品国产99久久香蕉| 国产精品久久久天天影视香蕉| 精品久久久久久综合日本| 精品国产一区二区三区久久久狼| 无码超乳爆乳中文字幕久久| 无码日韩人妻精品久久蜜桃| 久久久噜噜噜久久中文字幕色伊伊 | 无遮挡粉嫩小泬久久久久久久| 国产精品久久久香蕉| 久久久一本精品99久久精品88| 欧美伊人久久大香线蕉综合| 精品国产乱码久久久久久呢|