• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            Hwh’s Problem, FZU 2011年3月月賽之 H, FZU 2017

            Problem 2017 Hwh’s Problem

            Accept: 11    Submit: 20
            Time Limit: 5000 mSec    Memory Limit : 32768 KB

            Problem Description

            Polynomial is an expression of more than two algebraic terms, esp. the sum of several terms that contain different powers of the same variable(s).

            For example, G( p ) = 7 + 6g^1 + 2g^2 + 0g^3 + 113g^4 is an expression.

            Hwh is one “SB” ( short for “ShenBen” ) and he always love math!In this problem, you are expected to calculate the coefficients of the polynomial S(g) = G(p)^m, here m is an integer larger than zero.

            For example, G(p) = 3 + 2g^1 , and m = 2, then S(g) = 4g^2 + 12g + 9, so the coefficients of S(g) are {4, 12, 9}; G(p) = 3 + 2g^1 , and m = 3, then S(g) = 8g^3 + 36g^2 + 54g + 27, so the coefficients of S(g) are { 8, 36, 54, 27 }.

            The coefficients may be so large, so hwh wants to know the coefficients (mod 211812353).

            Input

            In the first line one integer T indicates the number of test cases. (T <= 1000)

            For every case, two integers n and m in a single line, indicate the number of element of the G(p) and the value of m. (2 <= n <= 10^5, 1 <= m <= 50000, n * m <= 10^5)

            Then one line has n integers Ki, indicates the i-th coefficient of G(p). (0 <= Ki <= 10^9)

            Output

            For each test case, output (n – 1)*m + 1 lines, the i-th (i >= 0) line output “[i] = ci”, where ci is the coefficient of g^i in S(g)

            Output one blank line after each test case.

            Sample Input

            2
            2 2
            3 2
            2 3
            3 2

            Sample Output

            [0] = 9
            [1] = 12
            [2] = 4

            [0] = 27
            [1] = 54
            [2] = 36
            [3] = 8

            Source

            FOJ有獎月賽-2011年03月


            全整數(shù) FFT 加速整系數(shù)多項式乘法,不能僅僅套模板,需要對 FFT 有一點點理解。。。

            1953ms 1796KB

              1 #include <iostream>
              2 #include <cstdio>
              3 
              4 using namespace std;
              5 
              6 template< int L, class T = intclass LT = long long >
              7 class  FFT
              8 {
              9 public : 
             10         FFT() {
             11                 p = -1;
             12         }
             13         void fft( T e[], int &m, int minL ) {
             14                 in( e, m, minL );
             15                 m = n;
             16                 fft();
             17                 out( e );
             18         }
             19         void ifft( T e[], int &m, int minL ) {
             20                 in( e, m, minL );
             21                 m = n;
             22                 ifft();
             23                 out( e );
             24         }
             25         T getP() {
             26                 return p;
             27         }
             28 
             29 public : 
             30         static int isPrime( T x ) {
             31                 T i;
             32                 if ( x < 2 ) {
             33                         return 0;
             34                 }
             35                 /* overflow !! */
             36                 for ( i = 2; (LT)i*<= x; ++i ) {
             37                         if ( x % i == 0 ) {
             38                                 return 0;
             39                         }
             40                 }
             41                 return 1;
             42         }
             43         static T powMod( T a, T b, T c ) {
             44                 T ans = 1;
             45                 a %= c;
             46                 while ( b > 0 ) {
             47                         if ( b & 1 ) {
             48                                 ans = ( (LT)ans * a ) % c;
             49                         }
             50                         a = ( (LT)a * a ) % c;
             51                         b >>= 1;
             52                 }
             53                 return ans;
             54         }
             55 
             56 private : 
             57         /* p is a prime number */
             58         int isG( T g, T p ) {
             59                 T p0 = p - 1, i;
             60                 for ( i = 1; (LT)i*<= p0; ++i ) {
             61                         if ( p0 % i == 0 ) {
             62                                 if ( (powMod(g,i,p)==1&& (i<p0) ) {
             63                                         return 0;
             64                                 }
             65                                 if ( (powMod(g,p0/i,p)==1&& (p0/i<p0) ) {
             66                                         return 0;
             67                                 }
             68                         }
             69                 }
             70                 return 1;
             71         }
             72         int rev_bit( int i ) {
             73                 int j = 0, k;
             74                 for ( k = 0; k < bit; ++k ) {
             75                         j = ( (j<<1)|(i&1) );
             76                         i >>= 1;
             77                 }
             78                 return j;
             79         }
             80         void reverse() {
             81                 int i, j;
             82                 T t;
             83                 for ( i = 0; i < n; ++i ) {
             84                         j = rev_bit( i );
             85                         if ( i < j ) {
             86                                 t = a[ i ];
             87                                 a[ i ] = a[ j ];
             88                                 a[ j ] = t;
             89                         }
             90                 }
             91         }
             92         void in( T e[], int m, int minL ) {
             93                 int i;
             94                 bit = 0;
             95                 while ( (1<<(++bit)) < minL )
             96                         ;
             97                 n = (1<<bit);
             98                 for ( i = 0; i < m; ++i ) {
             99                         a[ i ] = e[ i ];
            100                 }
            101                 for ( i = m; i < n; ++i ) {
            102                         a[ i ] = 0;
            103                 }
            104                 if ( p < 0 ) {
            105                         init( 21211812353 );
            106                 }
            107         }
            108         // lim2 >= bit
            109         void init( int lim2, T minP ) {
            110                 T k = 2, ig = 2;
            111                 int i;
            112                 do {
            113                         ++k;
            114                         p = ( (k<<lim2) | 1 );
            115                 } while ( (p<minP) || (!isPrime(p)) );
            116                 while ( !isG(ig,p) ) {
            117                         ++ig;
            118                 }
            119                 for ( i = 0; i < bit; ++i ) {
            120                         g[ i ] = powMod( ig, (k<<(lim2-bit+i)), p );
            121                 }
            122         }
            123         void fft() {
            124                 T w, wm, u, t;
            125                 int s, m, m2, j, k;
            126                 reverse();
            127                 for ( s = bit-1; s >= 0--s ) {
            128                         m2 = (1<<(bit-s));
            129                         m = (m2>>1);
            130                         wm = g[ s ];
            131                         for ( k = 0; k < n; k += m2 ) {
            132                                 w = 1;
            133                                 for ( j = 0; j < m; ++j ) {
            134                                         t = ((LT)(w)) * a[k+j+m] % p;
            135                                         u = a[ k + j ];
            136                                         a[ k + j ] = ( u + t ) % p;
            137                                         a[ k + j + m ] = ( u + p - t ) % p;
            138                                         w = ( ((LT)w) * wm ) % p;
            139                                 }
            140                         }
            141                 }
            142         }
            143         void ifft() {
            144                 T w, wm, u, t, inv;
            145                 int s, m, m2, j, k;
            146                 reverse();
            147                 for ( s = bit-1; s >= 0--s ) {
            148                         m2 = (1<<(bit-s));
            149                         m = (m2>>1);
            150                         wm = powMod( g[s], p-2, p );
            151                         for ( k = 0; k < n; k += m2 ) {
            152                                 w = 1;
            153                                 for ( j = 0; j < m; ++j ) {
            154                                         t = ((LT)(w)) * a[k+j+m] % p;
            155                                         u = a[ k + j ];
            156                                         a[ k + j ] = ( u + t ) % p;
            157                                         a[ k + j + m ] = ( u + p - t ) % p;
            158                                         w = ( ((LT)w) * wm ) % p;
            159                                 }
            160                         }
            161                 }
            162                 inv = powMod( n, p-2, p );
            163                 for ( k = 0; k < n; ++k ) {
            164                         a[ k ] = ( ((LT)inv) * a[ k ] ) % p;
            165                 }
            166         }
            167         void out( T e[] ) {
            168                 int i;
            169                 for ( i = 0; i < n; ++i ) {
            170                         e[ i ] = a[ i ];
            171                 }
            172         }
            173 
            174         T a[ L ], g[ 100 ], p;
            175         int n, bit;
            176 };
            177 
            178 
            179 #define  L  200009
            180 typedef  long long Lint;
            181 
            182 FFT< L, int, Lint > fft;
            183 
            184 int a[ L ];
            185 
            186 int main() {
            187         int td, n, m, t, i, p;
            188         scanf( "%d"&td );
            189         while ( td-- > 0 ) {
            190                 scanf( "%d%d"&n, &m );
            191                 for ( i = 0; i < n; ++i ) {
            192                         scanf( "%d", a+i );
            193                 }
            194                 t = (n-1)*+ 1;
            195                 fft.fft( a, n, t );
            196                 p = fft.getP();
            197                 for ( i = 0; i < n; ++i ) {
            198                         a[ i ] = fft.powMod( a[ i ], m, p );
            199                 }
            200                 fft.ifft( a, n, n );
            201                 for ( i = 0; i < t; ++i ) {
            202                         printf( "[%d] = %d\n", i, a[ i ] );
            203                 }
            204                 printf( "\n" );
            205         }
            206         return 0;
            207 }
            208 


            posted on 2011-04-05 22:37 coreBugZJ 閱讀(1155) 評論(0)  編輯 收藏 引用 所屬分類: ACM

            日本精品久久久久久久久免费| 久久精品无码一区二区app| 亚洲国产成人精品久久久国产成人一区二区三区综| 国产一级持黄大片99久久| 999久久久国产精品| 青青热久久国产久精品 | 久久精品a亚洲国产v高清不卡| 久久久久成人精品无码中文字幕| 99精品久久精品| 久久人妻少妇嫩草AV蜜桃| 久久亚洲AV无码精品色午夜麻豆| 精品久久人妻av中文字幕| 国产激情久久久久影院| 久久久久亚洲av无码专区| 欧美午夜A∨大片久久 | 国产精品美女久久福利网站| 久久精品亚洲日本波多野结衣| 国产精品久久久久久久久久免费| 精品久久久中文字幕人妻| 2020最新久久久视精品爱| 热99RE久久精品这里都是精品免费| 久久99精品国产99久久6男男| 超级碰碰碰碰97久久久久| 精品多毛少妇人妻AV免费久久| 亚洲综合日韩久久成人AV| 国产精品亚洲美女久久久| 香蕉久久夜色精品国产小说| 久久亚洲中文字幕精品有坂深雪 | 三级片免费观看久久| 久久九九有精品国产23百花影院| 国产一区二区久久久| 四虎亚洲国产成人久久精品| 久久综合九色综合久99| 久久精品一区二区| 伊人久久免费视频| 亚洲国产天堂久久综合网站| 狠狠狠色丁香婷婷综合久久五月 | 伊人久久大香线蕉综合网站| 青青久久精品国产免费看 | 无码久久精品国产亚洲Av影片| 伊人久久大香线蕉综合热线|