• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            Hwh’s Problem, FZU 2011年3月月賽之 H, FZU 2017

            Problem 2017 Hwh’s Problem

            Accept: 11    Submit: 20
            Time Limit: 5000 mSec    Memory Limit : 32768 KB

            Problem Description

            Polynomial is an expression of more than two algebraic terms, esp. the sum of several terms that contain different powers of the same variable(s).

            For example, G( p ) = 7 + 6g^1 + 2g^2 + 0g^3 + 113g^4 is an expression.

            Hwh is one “SB” ( short for “ShenBen” ) and he always love math!In this problem, you are expected to calculate the coefficients of the polynomial S(g) = G(p)^m, here m is an integer larger than zero.

            For example, G(p) = 3 + 2g^1 , and m = 2, then S(g) = 4g^2 + 12g + 9, so the coefficients of S(g) are {4, 12, 9}; G(p) = 3 + 2g^1 , and m = 3, then S(g) = 8g^3 + 36g^2 + 54g + 27, so the coefficients of S(g) are { 8, 36, 54, 27 }.

            The coefficients may be so large, so hwh wants to know the coefficients (mod 211812353).

            Input

            In the first line one integer T indicates the number of test cases. (T <= 1000)

            For every case, two integers n and m in a single line, indicate the number of element of the G(p) and the value of m. (2 <= n <= 10^5, 1 <= m <= 50000, n * m <= 10^5)

            Then one line has n integers Ki, indicates the i-th coefficient of G(p). (0 <= Ki <= 10^9)

            Output

            For each test case, output (n – 1)*m + 1 lines, the i-th (i >= 0) line output “[i] = ci”, where ci is the coefficient of g^i in S(g)

            Output one blank line after each test case.

            Sample Input

            2
            2 2
            3 2
            2 3
            3 2

            Sample Output

            [0] = 9
            [1] = 12
            [2] = 4

            [0] = 27
            [1] = 54
            [2] = 36
            [3] = 8

            Source

            FOJ有獎月賽-2011年03月


            全整數 FFT 加速整系數多項式乘法,不能僅僅套模板,需要對 FFT 有一點點理解。。。

            1953ms 1796KB

              1 #include <iostream>
              2 #include <cstdio>
              3 
              4 using namespace std;
              5 
              6 template< int L, class T = intclass LT = long long >
              7 class  FFT
              8 {
              9 public : 
             10         FFT() {
             11                 p = -1;
             12         }
             13         void fft( T e[], int &m, int minL ) {
             14                 in( e, m, minL );
             15                 m = n;
             16                 fft();
             17                 out( e );
             18         }
             19         void ifft( T e[], int &m, int minL ) {
             20                 in( e, m, minL );
             21                 m = n;
             22                 ifft();
             23                 out( e );
             24         }
             25         T getP() {
             26                 return p;
             27         }
             28 
             29 public : 
             30         static int isPrime( T x ) {
             31                 T i;
             32                 if ( x < 2 ) {
             33                         return 0;
             34                 }
             35                 /* overflow !! */
             36                 for ( i = 2; (LT)i*<= x; ++i ) {
             37                         if ( x % i == 0 ) {
             38                                 return 0;
             39                         }
             40                 }
             41                 return 1;
             42         }
             43         static T powMod( T a, T b, T c ) {
             44                 T ans = 1;
             45                 a %= c;
             46                 while ( b > 0 ) {
             47                         if ( b & 1 ) {
             48                                 ans = ( (LT)ans * a ) % c;
             49                         }
             50                         a = ( (LT)a * a ) % c;
             51                         b >>= 1;
             52                 }
             53                 return ans;
             54         }
             55 
             56 private : 
             57         /* p is a prime number */
             58         int isG( T g, T p ) {
             59                 T p0 = p - 1, i;
             60                 for ( i = 1; (LT)i*<= p0; ++i ) {
             61                         if ( p0 % i == 0 ) {
             62                                 if ( (powMod(g,i,p)==1&& (i<p0) ) {
             63                                         return 0;
             64                                 }
             65                                 if ( (powMod(g,p0/i,p)==1&& (p0/i<p0) ) {
             66                                         return 0;
             67                                 }
             68                         }
             69                 }
             70                 return 1;
             71         }
             72         int rev_bit( int i ) {
             73                 int j = 0, k;
             74                 for ( k = 0; k < bit; ++k ) {
             75                         j = ( (j<<1)|(i&1) );
             76                         i >>= 1;
             77                 }
             78                 return j;
             79         }
             80         void reverse() {
             81                 int i, j;
             82                 T t;
             83                 for ( i = 0; i < n; ++i ) {
             84                         j = rev_bit( i );
             85                         if ( i < j ) {
             86                                 t = a[ i ];
             87                                 a[ i ] = a[ j ];
             88                                 a[ j ] = t;
             89                         }
             90                 }
             91         }
             92         void in( T e[], int m, int minL ) {
             93                 int i;
             94                 bit = 0;
             95                 while ( (1<<(++bit)) < minL )
             96                         ;
             97                 n = (1<<bit);
             98                 for ( i = 0; i < m; ++i ) {
             99                         a[ i ] = e[ i ];
            100                 }
            101                 for ( i = m; i < n; ++i ) {
            102                         a[ i ] = 0;
            103                 }
            104                 if ( p < 0 ) {
            105                         init( 21211812353 );
            106                 }
            107         }
            108         // lim2 >= bit
            109         void init( int lim2, T minP ) {
            110                 T k = 2, ig = 2;
            111                 int i;
            112                 do {
            113                         ++k;
            114                         p = ( (k<<lim2) | 1 );
            115                 } while ( (p<minP) || (!isPrime(p)) );
            116                 while ( !isG(ig,p) ) {
            117                         ++ig;
            118                 }
            119                 for ( i = 0; i < bit; ++i ) {
            120                         g[ i ] = powMod( ig, (k<<(lim2-bit+i)), p );
            121                 }
            122         }
            123         void fft() {
            124                 T w, wm, u, t;
            125                 int s, m, m2, j, k;
            126                 reverse();
            127                 for ( s = bit-1; s >= 0--s ) {
            128                         m2 = (1<<(bit-s));
            129                         m = (m2>>1);
            130                         wm = g[ s ];
            131                         for ( k = 0; k < n; k += m2 ) {
            132                                 w = 1;
            133                                 for ( j = 0; j < m; ++j ) {
            134                                         t = ((LT)(w)) * a[k+j+m] % p;
            135                                         u = a[ k + j ];
            136                                         a[ k + j ] = ( u + t ) % p;
            137                                         a[ k + j + m ] = ( u + p - t ) % p;
            138                                         w = ( ((LT)w) * wm ) % p;
            139                                 }
            140                         }
            141                 }
            142         }
            143         void ifft() {
            144                 T w, wm, u, t, inv;
            145                 int s, m, m2, j, k;
            146                 reverse();
            147                 for ( s = bit-1; s >= 0--s ) {
            148                         m2 = (1<<(bit-s));
            149                         m = (m2>>1);
            150                         wm = powMod( g[s], p-2, p );
            151                         for ( k = 0; k < n; k += m2 ) {
            152                                 w = 1;
            153                                 for ( j = 0; j < m; ++j ) {
            154                                         t = ((LT)(w)) * a[k+j+m] % p;
            155                                         u = a[ k + j ];
            156                                         a[ k + j ] = ( u + t ) % p;
            157                                         a[ k + j + m ] = ( u + p - t ) % p;
            158                                         w = ( ((LT)w) * wm ) % p;
            159                                 }
            160                         }
            161                 }
            162                 inv = powMod( n, p-2, p );
            163                 for ( k = 0; k < n; ++k ) {
            164                         a[ k ] = ( ((LT)inv) * a[ k ] ) % p;
            165                 }
            166         }
            167         void out( T e[] ) {
            168                 int i;
            169                 for ( i = 0; i < n; ++i ) {
            170                         e[ i ] = a[ i ];
            171                 }
            172         }
            173 
            174         T a[ L ], g[ 100 ], p;
            175         int n, bit;
            176 };
            177 
            178 
            179 #define  L  200009
            180 typedef  long long Lint;
            181 
            182 FFT< L, int, Lint > fft;
            183 
            184 int a[ L ];
            185 
            186 int main() {
            187         int td, n, m, t, i, p;
            188         scanf( "%d"&td );
            189         while ( td-- > 0 ) {
            190                 scanf( "%d%d"&n, &m );
            191                 for ( i = 0; i < n; ++i ) {
            192                         scanf( "%d", a+i );
            193                 }
            194                 t = (n-1)*+ 1;
            195                 fft.fft( a, n, t );
            196                 p = fft.getP();
            197                 for ( i = 0; i < n; ++i ) {
            198                         a[ i ] = fft.powMod( a[ i ], m, p );
            199                 }
            200                 fft.ifft( a, n, n );
            201                 for ( i = 0; i < t; ++i ) {
            202                         printf( "[%d] = %d\n", i, a[ i ] );
            203                 }
            204                 printf( "\n" );
            205         }
            206         return 0;
            207 }
            208 


            posted on 2011-04-05 22:37 coreBugZJ 閱讀(1159) 評論(0)  編輯 收藏 引用 所屬分類: ACM

            久久久久一级精品亚洲国产成人综合AV区| 国产A级毛片久久久精品毛片| 久久婷婷午色综合夜啪| 久久精品国产99国产精品导航 | 精品久久777| 欧美一区二区精品久久| 免费一级做a爰片久久毛片潮| 性高湖久久久久久久久| 久久亚洲精品中文字幕三区| 久久精品视频一| 中文字幕一区二区三区久久网站| 久久久人妻精品无码一区| 久久综合亚洲欧美成人| 久久艹国产| 久久国产精品99精品国产987| 无码国内精品久久人妻麻豆按摩| 九九久久自然熟的香蕉图片| 精品久久久久久国产免费了| 精品无码久久久久国产| 色婷婷综合久久久久中文字幕 | 久久久久99精品成人片直播| 国产 亚洲 欧美 另类 久久| 久久精品无码午夜福利理论片| 麻豆国内精品久久久久久| 国产一区二区三区久久| 亚洲AV无码久久| 久久久高清免费视频| 久久亚洲电影| 久久亚洲2019中文字幕| 国产成人久久777777| 免费国产99久久久香蕉| 国产精品久久久久久搜索| 久久久婷婷五月亚洲97号色| 亚洲乱码精品久久久久.. | 日韩精品久久久肉伦网站| 亚洲午夜无码久久久久小说| 久久人人爽人人澡人人高潮AV| 91精品国产综合久久香蕉| 99热精品久久只有精品| 久久精品18| 午夜精品久久久久|