• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            HDOJ 3714 Error Curves

            Error Curves

            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
            Total Submission(s): 275    Accepted Submission(s): 98


            Problem Description
            Josephina is a clever girl and addicted to Machine Learning recently. She
            pays much attention to a method called Linear Discriminant Analysis, which
            has many interesting properties.
            In order to test the algorithm's efficiency, she collects many datasets.
            What's more, each data is divided into two parts: training data and test
            data. She gets the parameters of the model on training data and test the
            model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
             


             

            Input
            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
             


             

            Output
            For each test case, output the answer in a line. Round to 4 digits after the decimal point.
             


             

            Sample Input
            2 1 2 0 0 2 2 0 0 2 -4 2
             


             

            Sample Output
            0.0000 0.5000



            三分法


            #include <stdio.h>

            #define  L  10009
            #define  EPS  (1e-10)

            int n, a[ L ], b[ L ], c[ L ];

            int main() {
                    
            int td, i;
                    
            double left, right, midL, midR, tmpL, tmpR, maxL, maxR;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d"&n );
                            
            for ( i = 0; i < n; ++i ) {
                                    scanf( 
            "%d%d%d", a+i, b+i, c+i );
                            }

                            left 
            = 0;
                            right 
            = 1000;
                            
            while ( right - left > EPS ) {
                                    midL 
            = ( right - left ) / 3 + left;
                                    midR 
            = ( right - midL ) / 2 + midL;
                                    maxL 
            = maxR = -1e300;
                                    
            for ( i = 0; i < n; ++i ) {
                                            tmpL 
            = ( a[ i ] * midL + b[ i ] ) * midL + c[ i ];
                                            tmpR 
            = ( a[ i ] * midR + b[ i ] ) * midR + c[ i ];
                                            
            if ( maxL < tmpL ) {
                                                    maxL 
            = tmpL;
                                            }

                                            
            if ( maxR < tmpR ) {
                                                    maxR 
            = tmpR;
                                            }

                                    }

                                    
            if ( maxL < maxR ) {
                                            right 
            = midR;
                                    }

                                    
            else {
                                            left 
            = midL;
                                    }

                            }

                            printf( 
            "%0.4lf\n", maxL );
                    }

                    
            return 0;
            }


            posted on 2011-03-17 23:15 coreBugZJ 閱讀(1103) 評論(0)  編輯 收藏 引用 所屬分類: ACM

            久久午夜羞羞影院免费观看| 狠狠色婷婷综合天天久久丁香| 精品久久国产一区二区三区香蕉| 久久这里只有精品久久| 久久久久国产视频电影| 久久国语露脸国产精品电影| 久久精品无码专区免费青青| 97久久香蕉国产线看观看| 久久精品国产精品亜洲毛片| 伊人久久大香线焦AV综合影院| 狠狠狠色丁香婷婷综合久久五月| 亚洲国产香蕉人人爽成AV片久久| 久久久久亚洲精品日久生情 | 91精品无码久久久久久五月天| 久久se这里只有精品| 日韩精品久久无码中文字幕| 久久久精品久久久久久| 久久久无码一区二区三区| 亚洲国产高清精品线久久| 久久国产精品99久久久久久老狼| 香蕉久久夜色精品国产尤物 | 亚洲乱码日产精品a级毛片久久| 久久亚洲AV成人无码电影| 久久人搡人人玩人妻精品首页| 久久久久亚洲AV无码麻豆| 久久综合鬼色88久久精品综合自在自线噜噜 | 久久夜色精品国产网站| 99久久免费国产精品特黄| 久久久91人妻无码精品蜜桃HD| 91麻豆精品国产91久久久久久| 久久精品人人槡人妻人人玩AV| 久久人做人爽一区二区三区| 久久乐国产综合亚洲精品| 久久精品国产精品亚洲下载| 99久久综合狠狠综合久久| 久久91亚洲人成电影网站| 99国产精品久久久久久久成人热| 久久精品国产亚洲av水果派 | 少妇久久久久久被弄到高潮| 久久久精品国产亚洲成人满18免费网站| 久久精品国产精品国产精品污|