• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            HDOJ 3714 Error Curves

            Error Curves

            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
            Total Submission(s): 275    Accepted Submission(s): 98


            Problem Description
            Josephina is a clever girl and addicted to Machine Learning recently. She
            pays much attention to a method called Linear Discriminant Analysis, which
            has many interesting properties.
            In order to test the algorithm's efficiency, she collects many datasets.
            What's more, each data is divided into two parts: training data and test
            data. She gets the parameters of the model on training data and test the
            model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
             


             

            Input
            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
             


             

            Output
            For each test case, output the answer in a line. Round to 4 digits after the decimal point.
             


             

            Sample Input
            2 1 2 0 0 2 2 0 0 2 -4 2
             


             

            Sample Output
            0.0000 0.5000



            三分法


            #include <stdio.h>

            #define  L  10009
            #define  EPS  (1e-10)

            int n, a[ L ], b[ L ], c[ L ];

            int main() {
                    
            int td, i;
                    
            double left, right, midL, midR, tmpL, tmpR, maxL, maxR;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d"&n );
                            
            for ( i = 0; i < n; ++i ) {
                                    scanf( 
            "%d%d%d", a+i, b+i, c+i );
                            }

                            left 
            = 0;
                            right 
            = 1000;
                            
            while ( right - left > EPS ) {
                                    midL 
            = ( right - left ) / 3 + left;
                                    midR 
            = ( right - midL ) / 2 + midL;
                                    maxL 
            = maxR = -1e300;
                                    
            for ( i = 0; i < n; ++i ) {
                                            tmpL 
            = ( a[ i ] * midL + b[ i ] ) * midL + c[ i ];
                                            tmpR 
            = ( a[ i ] * midR + b[ i ] ) * midR + c[ i ];
                                            
            if ( maxL < tmpL ) {
                                                    maxL 
            = tmpL;
                                            }

                                            
            if ( maxR < tmpR ) {
                                                    maxR 
            = tmpR;
                                            }

                                    }

                                    
            if ( maxL < maxR ) {
                                            right 
            = midR;
                                    }

                                    
            else {
                                            left 
            = midL;
                                    }

                            }

                            printf( 
            "%0.4lf\n", maxL );
                    }

                    
            return 0;
            }


            posted on 2011-03-17 23:15 coreBugZJ 閱讀(1103) 評論(0)  編輯 收藏 引用 所屬分類: ACM

            国产精品久久久天天影视香蕉| 久久精品国产色蜜蜜麻豆| 国产精品久久久久久久久| 91精品观看91久久久久久| 日本精品久久久久久久久免费| 精品伊人久久久| 99国内精品久久久久久久| 狠狠色丁香婷婷久久综合五月 | 久久久精品日本一区二区三区| 亚洲午夜精品久久久久久app| 72种姿势欧美久久久久大黄蕉| 久久无码人妻精品一区二区三区| 亚洲狠狠婷婷综合久久蜜芽| 久久激情五月丁香伊人| 久久精品国产亚洲精品2020| 性做久久久久久久久老女人| 欧美久久精品一级c片片| 久久精品国产免费观看三人同眠| 麻豆精品久久久一区二区| 99久久精品免费看国产一区二区三区 | 久久精品视频一| 精品99久久aaa一级毛片| 国产精品久久久久久福利漫画| 国产成人精品综合久久久久| 伊人久久国产免费观看视频| 久久精品国产99久久丝袜| 香蕉久久夜色精品国产小说| 国产91色综合久久免费分享| 97精品伊人久久大香线蕉app| 久久偷看各类wc女厕嘘嘘| 亚洲第一极品精品无码久久| 久久丫忘忧草产品| 久久精品国产亚洲AV忘忧草18| 欧美精品九九99久久在观看| 色综合久久久久综合99| 伊人色综合九久久天天蜜桃| 亚洲国产精品成人AV无码久久综合影院 | 婷婷久久综合| 97香蕉久久夜色精品国产| 中文字幕久久亚洲一区| 亚洲香蕉网久久综合影视 |