• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            HDOJ 3714 Error Curves

            Error Curves

            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
            Total Submission(s): 275    Accepted Submission(s): 98


            Problem Description
            Josephina is a clever girl and addicted to Machine Learning recently. She
            pays much attention to a method called Linear Discriminant Analysis, which
            has many interesting properties.
            In order to test the algorithm's efficiency, she collects many datasets.
            What's more, each data is divided into two parts: training data and test
            data. She gets the parameters of the model on training data and test the
            model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
             


             

            Input
            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
             


             

            Output
            For each test case, output the answer in a line. Round to 4 digits after the decimal point.
             


             

            Sample Input
            2 1 2 0 0 2 2 0 0 2 -4 2
             


             

            Sample Output
            0.0000 0.5000



            三分法


            #include <stdio.h>

            #define  L  10009
            #define  EPS  (1e-10)

            int n, a[ L ], b[ L ], c[ L ];

            int main() {
                    
            int td, i;
                    
            double left, right, midL, midR, tmpL, tmpR, maxL, maxR;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d"&n );
                            
            for ( i = 0; i < n; ++i ) {
                                    scanf( 
            "%d%d%d", a+i, b+i, c+i );
                            }

                            left 
            = 0;
                            right 
            = 1000;
                            
            while ( right - left > EPS ) {
                                    midL 
            = ( right - left ) / 3 + left;
                                    midR 
            = ( right - midL ) / 2 + midL;
                                    maxL 
            = maxR = -1e300;
                                    
            for ( i = 0; i < n; ++i ) {
                                            tmpL 
            = ( a[ i ] * midL + b[ i ] ) * midL + c[ i ];
                                            tmpR 
            = ( a[ i ] * midR + b[ i ] ) * midR + c[ i ];
                                            
            if ( maxL < tmpL ) {
                                                    maxL 
            = tmpL;
                                            }

                                            
            if ( maxR < tmpR ) {
                                                    maxR 
            = tmpR;
                                            }

                                    }

                                    
            if ( maxL < maxR ) {
                                            right 
            = midR;
                                    }

                                    
            else {
                                            left 
            = midL;
                                    }

                            }

                            printf( 
            "%0.4lf\n", maxL );
                    }

                    
            return 0;
            }


            posted on 2011-03-17 23:15 coreBugZJ 閱讀(1103) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM

            91久久九九无码成人网站| 久久精品国产秦先生| 综合久久给合久久狠狠狠97色| 国产精品熟女福利久久AV| 亚洲七七久久精品中文国产| 思思久久精品在热线热| 久久99国产精品尤物| 国产高潮久久免费观看| 久久人人爽人人爽人人片AV不 | 少妇内射兰兰久久| 色综合久久天天综合| 中文字幕无码久久人妻| 狠狠色丁香婷婷久久综合不卡| 久久久久久久国产免费看| 久久久久人妻一区二区三区vr| 狠狠人妻久久久久久综合蜜桃| 97精品国产97久久久久久免费| 精品久久久久久中文字幕人妻最新| 精品久久久久久久久午夜福利| 久久精品国产69国产精品亚洲 | 中文成人无码精品久久久不卡| 国产三级久久久精品麻豆三级| 色播久久人人爽人人爽人人片aV | 精品久久久久久久久久久久久久久 | 久久综合九色综合久99| 久久精品国产亚洲av麻豆蜜芽| 精品久久久久久无码人妻热| 久久综合给合久久狠狠狠97色69| 精品久久久久久久久久久久久久久| 韩国免费A级毛片久久| 亚洲欧美伊人久久综合一区二区| 久久成人18免费网站| 麻豆精品久久久一区二区| 99久久精品国产免看国产一区| 久久久久人妻一区精品性色av| 香蕉久久夜色精品国产2020| 久久福利片| 欧美国产成人久久精品| 日本精品久久久久影院日本 | 亚洲狠狠婷婷综合久久久久| 久久婷婷五月综合成人D啪|