• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            生成全排列的非回溯方法(TopCoder SRM 591 DIV 2)

            問題來自 TopCoder SRM 591 DIV 2 的第二題:

            Problem Statement
               
            Let X and Y be two strings of equal length, consisting of uppercase English letters only. The two strings are called convertible if there is a permutation P of the English alphabet with the following property: if each character c in the string X is replaced by the character P(c), we obtain the string Y. (In other words, X and Y are convertible iff the following holds: whenever two letters of X are equal, the corresponding two letters of Y must be equal, and vice versa.)  For example, consider the string "ABCA". We can choose to replace each 'A' by a 'F', each 'B' by a 'B', and each 'C' by a 'G', obtaining the string "FBGF". Thus the strings "ABCA" and "FBGF" are convertible. The strings "ABCA" and "EFGH" are not convertible, because the two 'A's in the first string must correspond to the same letter in the second string. The strings "ABCA" and "EEEE" are not convertible, because different letters in the first string must correspond to different letters in the second string.  You are given two strings A and B of the same length. These strings only contain English letters from 'A' to 'I', inclusive. (That is, only the first 9 letters of the alphabet are used.)  You want to change A and B into two strings that are convertible. The only allowed change is to choose some indices (possibly none) and to remove the characters at those indices from each of the strings. (I.e., the removed characters must be at the same positions in both strings. For example, it is not allowed to only remove character 0 of A and character 3 of B.) For example, if A="ABAC", B="AHHA" and the chosen indices are 0 and 2, then the resulting strings will be "BC" and "HA". Our goal is to choose as few indices as possible, given that after the erasing we want to obtain two convertible strings. Compute and return the smallest possible number of chosen indices.
            Definition
               
            Class:
            ConvertibleStrings
            Method:
            leastRemovals
            Parameters:
            string, string
            Returns:
            int
            Method signature:
            int leastRemovals(string A, string B)
            (be sure your method is public)
               

            Constraints
            -
            A will contain between 1 and 50 characters, inclusive.
            -
            A and B will be of the same length.
            -
            A will contain characters from 'A' to 'I' only.
            -
            B will contain characters from 'A' to 'I' only.

            我的思路是窮舉A中字母與B中字母的對(duì)應(yīng)關(guān)系,看哪種對(duì)應(yīng)需要?jiǎng)h除的字母最少,這一最少值即是答案。
            窮舉對(duì)應(yīng)關(guān)系,就是生成全排列。
            我生成全排列的方式是回溯。

            之后看其他人的代碼,發(fā)現(xiàn)一個(gè)由給定排列求出其下一個(gè)排列的函數(shù),于是學(xué)習(xí)一下,自己實(shí)現(xiàn)如下:

            // 生成下一字典序排列
            // 假設(shè)a中元素互不相同
            // 若已經(jīng)是最后一個(gè)字典序排列,則返回0,否則返回1
            int next_permutation( int a[], int n ) {
                    
            int i, j;
                    
            for ( i = n-1; (0 < i) && (a[i-1> a[i]); --i ) {
                    }
                    
            if ( 0 >= i ) {
                            
            return 0;
                    }
                    
            for ( j = n-1; j >= i; --j ) {
                            
            if ( a[ j ] > a[ i-1 ] ) {
                                    
            int tmp = a[ i-1 ];
                                    a[ i
            -1 ] = a[ j ];
                                    a[ j ] 
            = tmp;
                                    j 
            = n - 1;
                                    
            while ( i < j ) {
                                            tmp 
            = a[ i ];
                                            a[ i ] 
            = a[ j ];
                                            a[ j ] 
            = tmp;
                                            
            ++i; --j;
                                    }
                                    
            break;
                            }
                    }
                    
            return 1;
            }

            還有人使用的是C++的 <algorithm> 中 next_permutation 函數(shù),功能一樣。


            posted on 2013-09-28 17:03 coreBugZJ 閱讀(910) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm

            久久国产欧美日韩精品免费| 久久久黄色大片| 99国产欧美久久久精品蜜芽| 91麻精品国产91久久久久| 久久人人爽人人爽人人片AV不| 久久久老熟女一区二区三区| 色综合色天天久久婷婷基地| 欧美日韩精品久久久久| 国産精品久久久久久久| 性欧美丰满熟妇XXXX性久久久| 国产L精品国产亚洲区久久| 蜜臀久久99精品久久久久久小说| 久久97久久97精品免视看| 久久男人Av资源网站无码软件| 久久久久国产一级毛片高清板| 久久99热只有频精品8| 一本久道久久综合狠狠爱| 久久天天躁狠狠躁夜夜av浪潮| 久久国产精品-国产精品| 人妻无码αv中文字幕久久琪琪布| 久久久久久亚洲精品不卡 | 亚洲国产小视频精品久久久三级 | 久久免费视频1| 久久福利片| 国产亚洲精午夜久久久久久 | 77777亚洲午夜久久多喷| 久久精品青青草原伊人| 亚洲精品国产综合久久一线| 久久精品国产精品亚洲艾草网美妙| 97精品国产91久久久久久| 无码人妻久久一区二区三区| 久久国产色av免费看| 久久精品国产99国产精品亚洲 | 欧美激情精品久久久久久| 久久精品综合一区二区三区| 久久国产免费直播| 三级片免费观看久久| 狠狠色丁香久久婷婷综合_中| 亚洲午夜久久久| 久久香综合精品久久伊人| 国产欧美久久久精品|