• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            POJ 3696 The Luckiest number

              1/*
              2POJ 3696 The Luckiest number
              3
              4
              5----問題描述:
              6
              7Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
              8
              9
             10----輸入:
             11
             12The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).
             13
             14The last test case is followed by a line containing a zero.
             15
             16
             17----輸出:
             18
             19For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
             20
             21
             22----樣例輸入:
             23
             248
             2511
             2616
             270
             28
             29
             30----樣例輸出:
             31
             32Case 1: 1
             33Case 2: 2
             34Case 3: 0
             35
             36
             37----分析:
             38
             39(轉自網上)
             40
             41題意:給一個數N(1<=N<=2000000000);問是否存在N的倍數M,且M的各個位全部由8組成,如果存在多個取最小的 M 并輸出M由幾個8組成。
             42
             43解題思路:因為M全部由8組成,即M=(10^x -1)*8/9=k*N;
             44
             45則    (10^x-1)*8/gcd(8,N)=9*k*N/gcd(8,N);
             46
             47令p=8/gcd(8,N);        q=9*N/gcd(8,N);    即    (10^x-1)*p=k*q;
             48
             49由于p和q互質,則(10^x-1)%q==0;
             50
             51根據同余定理可知,10^x ≡1(mod q)
             52
             53根據歐拉定理可知當gcd(a,b)==1時,a^φ(b)≡1(mod b);
             54
             55即可得出:當gcd(10,q)==1時    10^φ(q)≡1(mod q)   即通過枚舉φ(q)的因子(最小因子)就能得出結果
             56
             57由于N比較大,因此采用long long 型。同時做一個素數表。
             58
             59在進行冪求模運算的時候可以采用快速冪的方法。
             60
             61由于在進行快速冪求模的時候數據會超出long long 的表示范圍,因此要進行優化。
             62
             63
             64*/

             65
             66
             67/**********************************************
             68版本一:
             69*/

             70
             71#include <iostream>
             72#include <cstdio>
             73#include <cstring>
             74
             75using namespace std;
             76
             77typedef  __int64  Lint;
             78
             79#define  LP  45000
             80int  nprime;
             81Lint prime[ LP ];
             82
             83#define  LF  128
             84int  nf;
             85Lint f[ LF ];
             86
             87void init_prime() {
             88        int i, j;
             89        nprime = 0;
             90        memset( prime, 0sizeof(prime) );
             91        for ( i = 2; i < LP; ++i ) {
             92                if ( 0 == prime[ i ] ) {
             93                        prime[ nprime++ ] = i;
             94                        for ( j = i+i; j < LP; j += i ) {
             95                                prime[ j ] = 1;
             96                        }

             97                }

             98        }

             99}

            100
            101void calc_f( Lint n ) {
            102        int i;
            103        nf = 0;
            104        for ( i = 0; (i < nprime)&&(prime[i]*prime[i] <= n); ++i ) {
            105                while ( n % prime[ i ] == 0 ) {
            106                        f[ nf++ ] = prime[ i ];
            107                        n /= prime[ i ];
            108                }

            109        }

            110        if ( 1 < n ) {
            111                f[ nf++ ] = n;
            112        }

            113}

            114
            115Lint gcd( Lint a, Lint b ) {
            116        Lint t;
            117        while ( 0 != b ) {
            118                t = a;
            119                a = b;
            120                b = t % b;
            121        }

            122        return a;
            123}

            124        // a * b % m
            125Lint mul_mod( Lint a, Lint b, Lint m ) {
            126        Lint s = 0;
            127        a %= m;
            128        while ( 0 != b ) {
            129                if ( 0 != (1 & b) ) {
            130                        s += a;
            131                        if ( s >= m ) {
            132                                s -= m;
            133                        }

            134                }

            135                a <<= 1;
            136                if ( a >= m ) {
            137                        a -= m;
            138                }

            139                b >>= 1;
            140        }

            141        return s;
            142}

            143        // a ^ b % m
            144Lint pow_mod( Lint a, Lint b, Lint m ) {
            145        Lint s = 1;
            146        a %= m;
            147        while ( 0 != b ) {
            148                if ( 0 != (1 & b) ) {
            149                        s = mul_mod( s, a, m );
            150                }

            151                a = mul_mod( a, a, m );
            152                b >>= 1;
            153        }

            154        return s;
            155}

            156        // 歐拉
            157Lint phi( Lint n ) {
            158        Lint s = n;
            159        int i;
            160        for ( i = 0; (i < nprime)&&(prime[i]*prime[i] <= n); ++i ) {
            161                if ( n % prime[ i ] == 0 ) {
            162                        s = s / prime[ i ] * (prime[ i ] - 1);
            163                        do {
            164                                n /= prime[ i ];
            165                        }
             while ( n % prime[ i ] == 0 );
            166                }

            167        }

            168        if ( 1 < n ) {
            169                s = s / n * (n - 1);
            170        }

            171        return s;
            172}

            173
            174Lint solve( Lint n ) {
            175        Lint m = 9 * n / gcd(8, n);
            176        if ( 1 != gcd(10, m) ) {
            177                return 0;
            178        }

            179
            180        Lint ph = phi(m);
            181        Lint s  = ph;
            182        int  i;
            183        bool down = true;
            184        while ( down ) {
            185                down = false;
            186                calc_f(ph);
            187                for ( i = 0; i < nf; ++i ) {
            188                        if ( (pow_mod(10, ph/f[i], m) == 1&& (ph/f[i] < s) ) {
            189                                s = ph / f[ i ];
            190                                down = true;
            191                        }

            192                }

            193                ph = s;
            194        }

            195        return s;
            196}

            197
            198int main() {
            199        int td = 0, n;
            200        init_prime();
            201        while ( (1 == scanf("%d"&n)) && (0 < n) ) {
            202                printf( "Case %d: %I64d\n"++td, solve(n) );
            203        }

            204        return 0;
            205}

            206

            posted on 2012-06-01 21:32 coreBugZJ 閱讀(737) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithmMathematics課內作業

            狠狠88综合久久久久综合网| 亚洲色大成网站www久久九| 久久精品一区二区| 精品久久综合1区2区3区激情| 国产激情久久久久影院小草| 区久久AAA片69亚洲| 99久久无色码中文字幕| 亚洲精品国产自在久久| 国产精品久久久久影视不卡| 国内精品伊人久久久久网站| 少妇人妻综合久久中文字幕| 日韩精品久久久久久| 国产精品久久久久久久久久影院| jizzjizz国产精品久久| 国产精品久久久久久久久久影院| 亚洲天堂久久精品| 久久久国产精品亚洲一区| 亚洲七七久久精品中文国产| 蜜桃麻豆www久久| 久久久久亚洲AV成人片| 久久亚洲AV成人无码软件| 久久人人超碰精品CAOPOREN| 久久精品国产久精国产| 国产成人久久精品区一区二区| 精品久久久中文字幕人妻| 久久婷婷五月综合成人D啪| AV无码久久久久不卡蜜桃| 久久亚洲精品无码观看不卡| 97久久精品午夜一区二区| 亚洲精品无码久久久久久| 亚洲欧美久久久久9999 | 中文字幕乱码人妻无码久久| 久久精品国产国产精品四凭| 国产一区二区精品久久凹凸| 99久久人人爽亚洲精品美女| 久久发布国产伦子伦精品| 性色欲网站人妻丰满中文久久不卡 | 日韩久久无码免费毛片软件| 久久久久无码精品| 久久精品国产精品亚洲精品| 久久久青草久久久青草|