• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1708 Connected Gheeves

              1/*
              2EOJ 1708 Connected Gheeves
              3
              4
              5----問題描述:
              6
              7Gheeves (plural of gheef) are some objects similar to funnels. We define a gheef as a two dimensional object specified by a sequence of points (p1, p2, , pn) with the following conditions:
              8
              9 1. 3 ≤ n ≤ 1000
             10 2. If a point pi is specified by the coordinates (xi, yi), there is an index 1 < c < n such that y1 > y2 >  > yc and yc < yc+1 < yc+2 <  < yn. pc is called the cusp of the gheef.
             11 3. For all 1 ≤ i < c, xi < xc and for all c < i ≤ n, xi > xc.
             12 4. For 1 < i < c, the amount of rotation required to rotate pi-1 around pi in clockwise direction to become co-linear with pi and pi+1, is greater than 180 degrees. Likewise, for c < i < n, the amount of rotation required to rotate pi-1 around pi in clockwise rotation to become co-linear with pi and pi+1, is greater than 180 degrees.
             13 5. The set of segments joining two consecutive points of the sequence intersect only in their endpoints.
             14
             15We call the sequence of segments (p1p2, p2p3, , pn-1pn), the body of the gheef. In this problem, we are given two gheeves P = (p1, p2, , pn) and Q = (q1, q2, , qm), such that all x coordinates of pi are negative integers and all x coordinates of qi are positive integers. Assuming the cusps of the two gheeves are connected with a narrow pipe, we pour a certain amount of water inside the gheeves. As we pour water, the gheeves are filled upwards according to known physical laws (the level of water in two gheeves remains the same). Note that in the gheef P, if the level of water reaches min(y1, yn), the water pours out of the gheef (the same is true for the gheef Q). Your program must determine the level of water in the two gheeves after pouring a certain amount of water. Since we have defined our problem in two dimensions, the amount of water is measured in terms of area it fills. Note that the volume of pipe connecting cusps is considered as zero.
             16
             17
             18----輸入:
             19
             20The first number in the input line, t is the number of test cases. Each test case is specified on three lines of input. The first line contains a single integer a (1 ≤ a ≤ 100000) which specifies the amount of water poured into two gheeves. The next two lines specify the two gheeves P and Q respectively, each of the form k x1 y1 x2 y2  xk yk where k is the number of points in the gheef (n for P and m for Q), and the xi yi sequence specify the coordinates of the points in the sequences.
             21
             22
             23----輸出:
             24
             25The output contains t lines, each corresponding to an input test case in that order. The output line contains a single integer L indicating the final level of water, expressed in terms of y coordinates rounded to three digits after decimal points.
             26
             27
             28----樣例輸入:
             29
             302
             3125
             323 -30 10 -20 0 -10 10
             333 10 10 20 0 30 10
             3425
             353 -30 -10 -20 -20 -10 -10
             363 10 10 20 0 30 10
             37
             38
             39----樣例輸出:
             40
             413.536
             42-15.000
             43
             44
             45----分析:
             46
             47二分答案,計算面積。
             48
             49*/

             50
             51
             52#include <iostream>
             53#include <cstdio>
             54#include <cmath>
             55#include <iomanip>
             56#include <algorithm>
             57
             58using namespace std;
             59
             60
             61template<class T, unsigned int N>
             62class  Con
             63{
             64public : 
             65        void input() {
             66                int i;
             67                cin >> this->n;
             68                for ( i = 0; i < this->n; ++i ) {
             69                        cin >> this->x[ i ] >> this->y[ i ];
             70                }

             71                this->top = min( this->y[ 0 ], this->y[ n - 1 ] );
             72                for ( i = 1; (i < this->n) && (this->y[ i - 1 ] > this->y[ i ]); ++i ) {
             73                }

             74                this->= i - 1;
             75                this->bottom = this->y[ this->c ];
             76        }

             77
             78        double cross( double x0, double y0, double x1, double y1 ) const {
             79                return x0 * y1 - x1 * y0;
             80        }

             81
             82        double area( double level ) const {
             83                if ( this->bottom >= level ) {
             84                        return 0;
             85                }

             86                if ( this->top <= level ) {
             87                        level = this->top;
             88                }

             89                double yn = level;
             90                int i;
             91
             92                for ( i = 1; (i <= this->c) && (this->y[ i ] >= yn); ++i ) {
             93                }

             94                int lei = i;
             95                double le = (this->y[ i-1 ] - yn) * (this->x[ i ] - this->x[ i-1 ]) / 
             96                        (this->y[ i-1 ] - this->y[ i ]) + this->x[ i-1 ];
             97
             98                for ( i = this->+ 1; (i < this->n) && (this->y[ i ] < yn); ++i ) {
             99                }

            100                int rii = i - 1;
            101                double ri = this->x[ i ] - 
            102                        (this->y[ i ] - yn) * (this->x[ i ] - this->x[ i-1 ]) / 
            103                        (this->y[ i ] - this->y[ i-1 ]);
            104
            105                double area2 = 0;
            106                for ( i = lei; i < this->c; ++i ) {
            107                        area2 += cross( this->x[ i+1 ] - le, this->y[ i+1 ] - yn, 
            108                                this->x[ i ] - le, this->y[ i ] - yn );
            109                }

            110                for ( i = rii; i > this->c; --i ) {
            111                        area2 += cross( this->x[ i ] - ri, this->y[ i ] - yn, 
            112                                this->x[ i-1 ] - ri, this->y[ i-1 ] - yn );
            113                }

            114                return ( (ri - le) * (yn - this->bottom) - area2 ) / 2;
            115        }

            116
            117        T  getBottom() const {
            118                return this->bottom;
            119        }

            120        T  getTop() const{
            121                return this->top;
            122        }

            123
            124private : 
            125        int n, c;
            126        T   x[ N ], y[ N ], bottom, top;
            127}
            ;
            128
            129
            130const int N = 1009;
            131const double EPS = 0.0001;
            132
            133Con<int, N> p, q;
            134int a;
            135
            136double solve() {
            137        double hig = min( p.getTop(),    q.getTop()    );
            138        double low = min( p.getBottom(), q.getBottom() );
            139        double mid;
            140        while ( hig - low > EPS ) {
            141                mid = (hig + low) / 2;
            142                if ( p.area(mid) + q.area(mid) < a ) {
            143                        low = mid;
            144                }

            145                else {
            146                        hig = mid;
            147                }

            148        }

            149        return hig;
            150}

            151
            152int main() {
            153        int t;
            154        cin >> t;
            155        while ( 0 < t-- ) {
            156                cin >> a;
            157                p.input();
            158                q.input();
            159                cout << fixed << setprecision(3<< solve() << endl;
            160        }

            161        return 0;
            162}

            163

            posted on 2012-05-13 22:54 coreBugZJ 閱讀(818) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內作業

            婷婷久久综合| a高清免费毛片久久| 久久e热在这里只有国产中文精品99| 亚洲国产成人久久精品动漫| 国产成人精品久久综合| 香蕉久久久久久狠狠色| 色欲av伊人久久大香线蕉影院| 国产精品一久久香蕉国产线看观看| 99久久国产亚洲高清观看2024 | 欧美一级久久久久久久大| 久久乐国产综合亚洲精品| 国产精品美女久久久m| 久久免费视频一区| 久久久青草久久久青草| 国产精品中文久久久久久久| 99久久人人爽亚洲精品美女| 狠狠色婷婷久久一区二区| 狠狠精品干练久久久无码中文字幕| 久久久久精品国产亚洲AV无码| 久久精品免费观看| 亚洲va久久久噜噜噜久久天堂| 久久久久99精品成人片| 99精品久久精品一区二区| 国产A三级久久精品| 亚洲国产精品成人久久蜜臀| 久久精品国产秦先生| 久久综合综合久久综合| 久久久久久久久久久精品尤物| 久久se精品一区二区影院| 中文字幕久久欲求不满| 精品国产福利久久久| 国产麻豆精品久久一二三| 综合网日日天干夜夜久久| 久久久午夜精品| 亚洲欧美精品一区久久中文字幕| 久久精品二区| 久久性生大片免费观看性| 色悠久久久久久久综合网| 亚洲国产精品成人AV无码久久综合影院 | 久久综合久久性久99毛片| 中文字幕一区二区三区久久网站 |