• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1780 Escape

            /*
            EOJ 1780 Escape


            ----問題描述:

            You find yourself trapped in a large rectangular room, made up of large square tiles; some
            are accessible, others are blocked by obstacles or walls. With a single step, you can move
            from one tile to another tile if it is horizontally or vertically adjacent (i.e. you cannot move
            diagonally).
            To shake off any people following you, you do not want to move in a straight line. In fact,
            you want to take a turn at every opportunity, never moving in any single direction longer
            than strictly necessary. This means that if, for example, you enter a tile from the south,
            you will turn either left or right, leaving to the west or the east. Only if both directions
            are blocked, will you move on straight ahead. You never turn around and go back!
            Given a map of the room and your starting location, figure out how long it will take you
            to escape (that is: reach the edge of the room).


            ----輸入:

            On the first line an integer t (1 <= t <= 100): the number of test cases. Then for each test
            case:
            1. a line with two integers separated by a space, h and w (1 <= h,w <= 80), the height
            and width of the room;
            2. then h lines, each containing w characters, describing the room. Each character is one
            of . (period; an accessible space), # (a blocked space) or @ (your starting location).
            There will be exactly one @ character in each room description.


            ----輸出:

            For each test case:
            1. A line with an integer: the minimal number of steps necessary to reach the edge of
            the room, or -1 if no escape is possible.


            ----樣例輸入:

            2
            9 13
            #############
            #@.#
            #####.#.#.#.#
            #..#
            #.#.#.#.#.#.#
            #.#.#.#
            #.#.#.#.#.#.#
            #..#
            #####.#######
            4 6
            #.####
            #.#.##
            #@#
            ######


            ----樣例輸出:

            31
            -1


            ----分析:

            搜索即可,只是注意擴展方式,左或右可以時,不可向前。

            */




            /**********************************************************
            版本五:
            AC 0MS
            SPFA 求最短路。
            出口不止一個,邊界上的可達點都是出口。
            */


            #include 
            <stdio.h>
            #include 
            <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = -1010 };
            int dj[] = 010-1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int spfa() {
            #define  QL  (L*L*T)
                    
            static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    
            int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 
            0x3fsizeof(dist) );
                    memset( inq,  
            0,    sizeof(inq)  );
                    
            for ( i = 0; i < T; ++i ) {
                            queI[ qt ] 
            = srcI;
                            queJ[ qt ] 
            = srcJ;
                            queD[ qt ] 
            = i;
                            inq[ srcI ][ srcJ ][ i ] 
            = 1;
                            dist[ srcI ][ srcJ ][ i ] 
            = 0;
                            qt 
            = (qt + 1% QL;
                    }

                    
            while ( qh != qt ) {
                            i 
            = queI[ qh ];
                            j 
            = queJ[ qh ];
                            d 
            = queD[ qh ];
                            inq[ i ][ j ][ d ] 
            = 0;
                            qh 
            = (qh + 1% QL;

                            chg 
            = 0;

            #define  UPDATE if ( dist[ i ][ j ][ d ] + 1 < dist[ ni ][ nj ][ nd ] ) { \
                                    dist[ ni ][ nj ][ nd ] 
            = dist[ i ][ j ][ d ] + 1; \
                                    
            if ( ! inq[ ni ][ nj ][ nd ] ) { \
                                            inq[ ni ][ nj ][ nd ] 
            = 1; \
                                            queI[ qt ] 
            = ni; \
                                            queJ[ qt ] 
            = nj; \
                                            queD[ qt ] 
            = nd; \
                                            qt 
            = (qt + 1% QL; \
                                    }
             \
                            }

                            
            #define  MOD    ni = i + di[ nd ]; \
                            nj 
            = j + dj[ nd ]; \
                            
            if ( CAN == map[ ni ][ nj ] ) { \
                                    chg 
            = 1; \
                                    UPDATE \
                            }


                            nd 
            = (d + 1% T;
                            MOD

                            nd 
            = (d + T - 1% T;
                            MOD

                            
            if ( 0 == chg ) {
                                    nd 
            = d;
                                    MOD
                            }

                    }


            #define  UPANS \
                    
            for ( d = 0; d < T; ++d ) { \
                            
            if ( ans > dist[ dstI ][ dstJ ][ d ] ) { \
                                    ans 
            = dist[ dstI ][ dstJ ][ d ]; \
                            }
             \
                    }


                    ans 
            = INF;
                    
            for ( j = 1; j <= w; ++j ) {
                            
            if ( '.' == map[ 1 ][ j ] ) {
                                    dstI 
            = 1;
                                    dstJ 
            = j;
                                    UPANS
                            }

                            
            if ( '.' == map[ h ][ j ] ) {
                                    dstI 
            = h;
                                    dstJ 
            = j;
                                    UPANS
                            }

                    }

                    
            for ( i = 1; i <= h; ++i ) {
                            
            if ( '.' == map[ i ][ 1 ] ) {
                                    dstI 
            = i;
                                    dstJ 
            = 1;
                                    UPANS
                            }

                            
            if ( '.' == map[ i ][ w ] ) {
                                    dstI 
            = i;
                                    dstJ 
            = w;
                                    UPANS
                            }

                    }


                    
            if ( INF == ans ) {
                            ans 
            = -1;
                    }

                    
            return ans;
            }

            int main() {
                    
            int td;
                    
            int i, j;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d%d"&h, &w );
                            gets( map[ 
            0 ] );
                            memset( map, 
            '#'sizeof(map) );
                            
            for ( i = 1; i <= h; ++i ) {
                                    gets( map[ i ] 
            + 1 );
                                    
            for ( j = 1; j <= w; ++j ) {
                                            
            if ( '@' == map[ i ][ j ] ) {
                                                    srcI 
            = i;
                                                    srcJ 
            = j;
                                                    map[ i ][ j ] 
            = '.';
                                            }

                                    }

                            }


                            printf( 
            "%d\n", spfa() );
                    }

                    
            return 0;
            }



            /**********************************************************
            版本四:
            WA
            發現之前對 “You never turn around and go back!”理解有誤,只是不能后退而已。
            寬度優先搜索。

            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int bfs() {
            #define  QL  (L*L*T)
                    static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 0x3f, sizeof(dist) );
                    memset( inq,  0,    sizeof(inq)  );
                    i = srcI;
                    j = srcJ;
                    for ( nd = 0; nd < T; ++nd ) {
                            ni = i + di[ nd ];
                            nj = j + dj[ nd ];
                            if ( CAN == map[ ni ][ nj ] ) {
                                    queI[ qt ] = ni;
                                    queJ[ qt ] = nj;
                                    queD[ qt ] = nd;
                                    inq[ ni ][ nj ][ nd ] = 1;
                                    dist[ ni ][ nj ][ nd ] = 1;
                                    ++qt;
                            }
                    }
                    while ( qh != qt ) {
                            i = queI[ qh ];
                            j = queJ[ qh ];
                            d = queD[ qh ];
                            ++qh;

                            chg = 0;

            #define  UPDATE do { \
                                    dist[ ni ][ nj ][ nd ] = dist[ i ][ j ][ d ] + 1; \
                                    inq[ ni ][ nj ][ nd ] = 1; \
                                    queI[ qt ] = ni; \
                                    queJ[ qt ] = nj; \
                                    queD[ qt ] = nd; \
                                    ++qt; \
                            } while (0)

            #define  MOD    do { \
                                    ni = i + di[ nd ]; \
                                    nj = j + dj[ nd ]; \
                                    if ( CAN == map[ni][nj] ) { \
                                            chg = 1; \
                                            if ( ! inq[ni][nj][nd] ) { \
                                                    UPDATE; \
                                            } \
                                    } \
                            } while (0)

                            nd = (d + 1) % T;
                            MOD;

                            nd = (d + T - 1) % T;
                            MOD;

                            if ( 0 == chg ) {
                                    nd = d;
                                    MOD;
                            }
                    }

                    ans = dist[ dstI ][ dstJ ][ 0 ];
                    for ( d = 1; d < T; ++d ) {
                            if ( ans > dist[ dstI ][ dstJ ][ d ] ) {
                                    ans = dist[ dstI ][ dstJ ][ d ];
                            }
                    }
                    if ( INF == ans ) {
                            ans = -1;
                    }
                    return ans;
            }

            int solve() {
                    if ( (srcI == dstI) && (srcJ == dstJ) ) {
                            return 0;
                    }
                    return bfs();
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            memset( map, '#', sizeof(map) );
                            for ( i = 1; i <= h; ++i ) {
                                    gets( map[ i ] + 1 );
                                    map[ i ][ w+1 ] = '#';
                                    for ( j = 1; j <= w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                                    map[ i ][ j ] = '.';
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 1; (0 > dstI) && (j <= w); ++j ) {
                                    if ( '.' == map[ 1 ][ j ] ) {
                                            dstI = 1;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h ][ j ] ) {
                                            dstI = h;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 1; (0 > dstI) && (i <= h); ++i ) {
                                    if ( '.' == map[ i ][ 1 ] ) {
                                            dstI = i;
                                            dstJ = 1;
                                    }
                                    if ( '.' == map[ i ][ w ] ) {
                                            dstI = i;
                                            dstJ = w;
                                    }
                            }

                            printf( "%d\n", solve() );
                    }
                    return 0;
            }
            */



            /**********************************************************
            版本三:
            WA
            SPFA 求最短路。
            錯誤“從目標點可離開地圖”修正。
            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int spfa() {
            #define  QL  (L*L*T)
                    static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 0x3f, sizeof(dist) );
                    memset( inq,  0,    sizeof(inq)  );
                    for ( i = 0; i < T; ++i ) {
                            queI[ qt ] = srcI;
                            queJ[ qt ] = srcJ;
                            queD[ qt ] = i;
                            inq[ srcI ][ srcJ ][ i ] = 1;
                            dist[ srcI ][ srcJ ][ i ] = 0;
                            qt = (qt + 1) % QL;
                    }
                    while ( qh != qt ) {
                            i = queI[ qh ];
                            j = queJ[ qh ];
                            d = queD[ qh ];
                            inq[ i ][ j ][ d ] = 0;
                            qh = (qh + 1) % QL;

                            chg = 0;

            #define  UPDATE if ( dist[ i ][ j ][ d ] + 1 < dist[ ni ][ nj ][ nd ] ) { \
                                    dist[ ni ][ nj ][ nd ] = dist[ i ][ j ][ d ] + 1; \
                                    if ( ! inq[ ni ][ nj ][ nd ] ) { \
                                            inq[ ni ][ nj ][ nd ] = 1; \
                                            queI[ qt ] = ni; \
                                            queJ[ qt ] = nj; \
                                            queD[ qt ] = nd; \
                                            qt = (qt + 1) % QL; \
                                    } \
                            }
                            
            #define  MOD    ni = i + di[ nd ]; \
                            nj = j + dj[ nd ]; \
                            if ( CAN == map[ ni ][ nj ] ) { \
                                    chg = 1; \
                                    UPDATE \
                            }

                            nd = (d + 1) % T;
                            MOD

                            nd = (d + T - 1) % T;
                            MOD

                            if ( 0 == chg ) {
                                    nd = d;
                                    MOD
                            }
                    }

                    ans = dist[ dstI ][ dstJ ][ 0 ];
                    for ( d = 1; d < T; ++d ) {
                            if ( ans > dist[ dstI ][ dstJ ][ d ] ) {
                                    ans = dist[ dstI ][ dstJ ][ d ];
                            }
                    }
                    if ( INF == ans ) {
                            ans = -1;
                    }
                    return ans;
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            memset( map, '#', sizeof(map) );
                            for ( i = 1; i <= h; ++i ) {
                                    gets( map[ i ] + 1 );
                                    for ( j = 1; j <= w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                                    map[ i ][ j ] = '.';
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 1; (0 > dstI) && (j <= w); ++j ) {
                                    if ( '.' == map[ 1 ][ j ] ) {
                                            dstI = 1;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h ][ j ] ) {
                                            dstI = h;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 1; (0 > dstI) && (i <= h); ++i ) {
                                    if ( '.' == map[ i ][ 1 ] ) {
                                            dstI = i;
                                            dstJ = 1;
                                    }
                                    if ( '.' == map[ i ][ w ] ) {
                                            dstI = i;
                                            dstJ = w;
                                    }
                            }

                            printf( "%d\n", spfa() );
                    }
                    return 0;
            }
            */



            /**********************************************************
            版本二:
            WA
            SPFA 求最短路。
            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int spfa() {
            #define  QL  (L*L*T)
                    static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 0x3f, sizeof(dist) );
                    memset( inq,  0,    sizeof(inq)  );
                    for ( i = 0; i < T; ++i ) {
                            queI[ qt ] = srcI;
                            queJ[ qt ] = srcJ;
                            queD[ qt ] = i;
                            inq[ srcI ][ srcJ ][ i ] = 1;
                            dist[ srcI ][ srcJ ][ i ] = 0;
                            qt = (qt + 1) % QL;
                    }
                    while ( qh != qt ) {
                            i = queI[ qh ];
                            j = queJ[ qh ];
                            d = queD[ qh ];
                            inq[ i ][ j ][ d ] = 0;
                            qh = (qh + 1) % QL;

                            chg = 0;

            #define  UPDATE if ( dist[ i ][ j ][ d ] + 1 < dist[ ni ][ nj ][ nd ] ) { \
                                    dist[ ni ][ nj ][ nd ] = dist[ i ][ j ][ d ] + 1; \
                                    if ( ! inq[ ni ][ nj ][ nd ] ) { \
                                            inq[ ni ][ nj ][ nd ] = 1; \
                                            queI[ qt ] = ni; \
                                            queJ[ qt ] = nj; \
                                            queD[ qt ] = nd; \
                                            qt = (qt + 1) % QL; \
                                    } \
                            }
                            
            #define  MOD    ni = i + di[ nd ]; \
                            nj = j + dj[ nd ]; \
                            if ( CAN == map[ ni ][ nj ] ) { \
                                    chg = 1; \
                                    UPDATE \
                            }

                            nd = (d + 1) % T;
                            MOD

                            nd = (d + T - 1) % T;
                            MOD

                            if ( 0 == chg ) {
                                    nd = d;
                                    MOD
                            }
                    }

                    ans = dist[ dstI ][ dstJ ][ 0 ];
                    for ( d = 1; d < T; ++d ) {
                            if ( ans > dist[ dstI ][ dstJ ][ d ] ) {
                                    ans = dist[ dstI ][ dstJ ][ d ];
                            }
                    }
                    if ( INF == ans ) {
                            ans = -1;
                    }
                    return ans;
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            for ( i = 0; i < h; ++i ) {
                                    gets( map[ i ] );
                                    for ( j = 0; j < w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 0; (0 > dstI) && (j < w); ++j ) {
                                    if ( '.' == map[ 0 ][ j ] ) {
                                            dstI = 0;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h-1 ][ j ] ) {
                                            dstI = h - 1;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 0; (0 > dstI) && (i < h); ++i ) {
                                    if ( '.' == map[ i ][ 0 ] ) {
                                            dstI = i;
                                            dstJ = 0;
                                    }
                                    if ( '.' == map[ i ][ w-1 ] ) {
                                            dstI = i;
                                            dstJ = w - 1;
                                    }
                            }

                            printf( "%d\n", spfa() );
                    }
                    return 0;
            }
            */




            /**********************************************************
            版本一:
            TLE
            DFS 窮舉所有,取最小值。
            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];
            int  ans, tmp;
            int  walk[ L ][ L ];

            void dfs( int i, int j, int dir ) {
                    int ni, nj, chg = 0;
                    if ( (walk[ i ][ j ]) || (tmp >= ans) ) {
                            return;
                    }
                    if ((i == dstI) && (j == dstJ)) {
                            if (tmp < ans) {
                                    ans = tmp;
                            }
                            return;
                    }
                    walk[ i ][ j ] = 1;
                    ++tmp;

                    dir = (dir + 1) % T;
                    ni = i + di[ dir ];
                    nj = j + dj[ dir ];
                    if ( CAN == map[ ni ][ nj ] ) {
                            chg = 1;
                            dfs( ni, nj, dir);
                    }

                    dir = (dir + T - 2) % T;
                    ni = i + di[ dir ];
                    nj = j + dj[ dir ];
                    if ( CAN == map[ ni ][ nj ] ) {
                            chg = 1;
                            dfs( ni, nj, dir);
                    }

                    if ( 0 == chg ) {
                            dir = (dir + 1) % T;
                            ni = i + di[ dir ];
                            nj = j + dj[ dir ];
                            if ( CAN == map[ ni ][ nj ] ) {
                                    dfs( ni, nj, dir);
                            }
                    }

                    --tmp;
                    walk[ i ][ j ] = 0;
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            for ( i = 0; i < h; ++i ) {
                                    gets( map[ i ] );
                                    for ( j = 0; j < w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 0; (0 > dstI) && (j < w); ++j ) {
                                    if ( '.' == map[ 0 ][ j ] ) {
                                            dstI = 0;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h-1 ][ j ] ) {
                                            dstI = h - 1;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 0; (0 > dstI) && (i < h); ++i ) {
                                    if ( '.' == map[ i ][ 0 ] ) {
                                            dstI = i;
                                            dstJ = 0;
                                    }
                                    if ( '.' == map[ i ][ w-1 ] ) {
                                            dstI = i;
                                            dstJ = w - 1;
                                    }
                            }

                            memset( walk, 0, sizeof(walk) );
                            ans = INF;
                            tmp = 0;
                            for ( i = 0; i < T; ++i ) {
                                    dfs( srcI, srcJ, i );
                            }
                            printf( "%d\n", ((INF != ans) ? ans : (-1)) );
                    }
                    return 0;
            }
            */

            posted on 2012-04-21 16:40 coreBugZJ 閱讀(648) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內作業

            99久久免费国产精品热| 中文字幕无码久久人妻| 免费久久人人爽人人爽av| 日韩一区二区三区视频久久| 色天使久久综合网天天| 99久久香蕉国产线看观香| 久久综合给合久久狠狠狠97色 | 狠狠色丁香久久综合婷婷| 久久久久婷婷| 久久久久亚洲精品天堂| 亚洲第一永久AV网站久久精品男人的天堂AV | 99久久久国产精品免费无卡顿 | 久久天天躁狠狠躁夜夜av浪潮 | 精品国产乱码久久久久久1区2区| 久久中文字幕一区二区| 亚洲综合伊人久久大杳蕉| 久久亚洲2019中文字幕| 久久夜色精品国产欧美乱| 国产精品日韩深夜福利久久| 97久久久精品综合88久久| 四虎国产精品成人免费久久| 久久久精品国产sm调教网站| 伊人久久五月天| 久久久久99精品成人片牛牛影视| 国产午夜精品久久久久免费视| 久久成人永久免费播放| 日本国产精品久久| 天天久久狠狠色综合| 久久精品国产亚洲av影院| 亚洲色大成网站www久久九| 一级做a爰片久久毛片毛片| 久久久噜噜噜久久中文字幕色伊伊| 国产麻豆精品久久一二三| 国内精品伊人久久久久AV影院| 久久久精品人妻一区二区三区蜜桃| 国内精品久久久久影院老司 | 乱亲女H秽乱长久久久| 亚洲精品无码久久千人斩| 久久中文骚妇内射| 国产偷久久久精品专区| 欧美丰满熟妇BBB久久久|