• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            高斯消元求解逆矩陣——算法作業 1.3,EOJ 2865

            Description

            給定一個n*n的矩陣,輸出它的行列式值和逆矩陣。

             

            Input

            第一行一個整數表示n(n < 10),接下來有n行,每行有n個整數。其中第i行第j列用ai,j表示(-100 < ai,j < 100),保證存在逆矩陣

             

            Output

            第一行表示行列式值,接下來有n行,每行有n個數(注意可能不是整數,保留兩位小數)表示逆矩陣。其中每兩個數之間用一個空格隔開,行末不要有多余空格。詳情見輸出樣例。

             

            Sample Input

            3
            1 -3  7
            2 4 -3
            -3 7 2

            Sample Output

            196.00
            0.15 0.28 -0.10
            0.03 0.12 0.09
            0.13 0.01 0.05


            我的代碼:

             1#include <stdio.h>
             2 
             3#define  eps  0.00001
             4#define  iszero(x)  ( (-eps<(x)) && ((x)<eps)  )
             5 
             6#define  L  15
             7 
             8void gauss( double a[ L ][ L ], double x[ L ], double b[ L ], int n ) {
             9        int i, j, k;
            10        double s;
            11        for ( k = 1; k <= n; ++k ) {
            12                for ( i = k; (i<=n) && (iszero(a[i][k])); ++i ) {
            13                }

            14                if ( k != i ) {
            15                        for ( j = k; j <= n; ++k ) {
            16                                s = a[ k ][ j ];
            17                                a[ k ][ j ] = a[ i ][ j ];
            18                                a[ i ][ j ] = s;
            19                        }

            20                        s = b[ k ];
            21                        b[ k ] = b[ i ];
            22                        b[ i ] = s;
            23                }

            24                for ( i = k + 1; i <= n; ++i ) {
            25                        s = a[ i ][ k ] / a[ k ][ k ];
            26                        for ( j = k; j <= n; ++j ) {
            27                                a[ i ][ j ] -= a[ k ][ j ] * s;
            28                        }

            29                        b[ i ] -= b[ k ] * s;
            30                }

            31        }

            32        for ( i = n; i >= 1--i ) {
            33                s = b[ i ];
            34                for ( j = i + 1; j <= n; ++j ) {
            35                        s -= x[ j ] * a[ i ][ j ];
            36                }

            37                x[ i ] = s / a[ i ][ i ];
            38                if ( iszero(x[i]) ) {
            39                        x[ i ] = 0;
            40                }

            41        }

            42}

            43 
            44int main() {
            45        double a[ L ][ L ], x[ L ], b[ L ], at[ L ][ L ], ak[ L ][ L ], det;
            46        int n, i, j, k;
            47        scanf( "%d"&n );
            48        for ( i = 1; i <= n; ++i ) {
            49                for ( j = 1; j <= n; ++j ) {
            50                        scanf( "%lf"&ak[ i ][ j ] );
            51                }

            52        }

            53 
            54        // det
            55        for ( i = 1; i <= n; ++i ) {
            56                for ( j = 1; j <= n; ++j ) {
            57                        a[ i ][ j ] = ak[ i ][ j ];
            58                }

            59                b[ i ] = 0;
            60        }

            61        gauss( a, x, b, n );
            62        det = 1;
            63        for ( i = 1; i <= n; ++i ) {
            64                det *= a[ i ][ i ];
            65        }

            66        if ( iszero(det) ) {
            67                det = 0;
            68        }

            69        printf( "%0.2lf\n", det );
            70 
            71        // at
            72        for ( k = 1; k <= n; ++k ) {
            73                for ( i = 1; i <= n; ++i ) {
            74                        for ( j = 1; j <= n; ++j ) {
            75                                a[ i ][ j ] = ak[ i ][ j ];
            76                        }

            77                        b[ i ] = 0;
            78                }

            79                b[ k ] = 1;
            80                gauss( a, x, b, n );
            81                for ( i = 1; i <= n; ++i ) {
            82                        at[ i ][ k ] = x[ i ];
            83                }

            84        }

            85        for ( i = 1; i <= n; ++i ) {
            86                for ( j = 1; j < n; ++j ) {
            87                        printf( "%0.2lf ", at[ i ][ j ] );
            88                }

            89                printf( "%0.2lf\n", at[ i ][ n ] );
            90        }

            91        return 0;
            92}

            posted on 2011-03-23 16:05 coreBugZJ 閱讀(450) 評論(0)  編輯 收藏 引用 所屬分類: 課內作業

            国产免费久久精品99re丫y| 国产激情久久久久久熟女老人| 国产韩国精品一区二区三区久久| 72种姿势欧美久久久久大黄蕉| 久久www免费人成精品香蕉| 欧美日韩精品久久久久| 国产一久久香蕉国产线看观看 | 日本久久久久久中文字幕| 国产亚洲成人久久| 人妻无码αv中文字幕久久琪琪布 人妻无码久久一区二区三区免费 人妻无码中文久久久久专区 | 国产精品久久久久影院嫩草| 久久国产成人| 天天综合久久久网| 亚洲精品乱码久久久久66| 伊人久久大香线焦综合四虎 | 中文字幕亚洲综合久久2| 国产成人综合久久精品红| 国产精品久久久久久久午夜片 | 久久夜色tv网站| 久久99精品久久久久婷婷| 伊人久久精品影院| 久久久久国产一级毛片高清板| 99久久精品费精品国产一区二区| 伊人久久大香线蕉精品不卡| 久久久久亚洲精品天堂久久久久久| 国产精品一区二区久久不卡 | 亚洲αv久久久噜噜噜噜噜| 午夜精品久久久久久影视riav| 久久久久九国产精品| 国产精品欧美久久久久无广告| 精品久久久久久亚洲| 麻豆精品久久精品色综合| 国产精品18久久久久久vr| 久久ZYZ资源站无码中文动漫| 亚洲AV无码久久| 久久久久久久人妻无码中文字幕爆 | 亚洲国产一成人久久精品| 午夜精品久久久久久毛片| 国产亚洲精久久久久久无码| 69SEX久久精品国产麻豆| 99久久人妻无码精品系列蜜桃|