• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2012年11月>
            28293031123
            45678910
            11121314151617
            18192021222324
            2526272829301
            2345678

            統(tǒng)計(jì)

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(348) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統(tǒng)計(jì)系統(tǒng)
            精品久久久无码人妻中文字幕豆芽| 国产成人久久精品一区二区三区| 女同久久| 精品久久人人做人人爽综合 | 伊人久久综在合线亚洲2019| 亚洲中文字幕无码久久精品1| 狠狠色丁香久久婷婷综合_中| 久久久久综合中文字幕| 久久精品成人免费观看97| 国产精品日韩深夜福利久久| 99久久人人爽亚洲精品美女| 一本伊大人香蕉久久网手机| 99久久99久久精品国产| 亚洲国产精品久久| 久久国产精品免费| 午夜视频久久久久一区| 久久婷婷人人澡人人| 无码国内精品久久综合88 | 久久棈精品久久久久久噜噜| 嫩草伊人久久精品少妇AV| 久久亚洲精品无码AV红樱桃| 九九精品99久久久香蕉| 日本久久久久久中文字幕| 久久国产高清一区二区三区| 热久久视久久精品18| 精品久久久久久无码专区| 99久久综合国产精品二区| 精品国产乱码久久久久软件| 亚洲中文字幕无码久久精品1| 久久久九九有精品国产| 亚洲国产综合久久天堂 | 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 欧洲成人午夜精品无码区久久 | 久久久一本精品99久久精品66 | 99精品国产在热久久| 久久99国产精品成人欧美| 婷婷国产天堂久久综合五月| 久久成人影院精品777| 无码任你躁久久久久久老妇| 久久国产精品成人影院| 色婷婷久久综合中文久久一本|