• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2011年10月>
            2526272829301
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(357) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統計系統
            亚洲乱码中文字幕久久孕妇黑人| 久久久久成人精品无码中文字幕| 草草久久久无码国产专区| 久久精品国产亚洲AV不卡| 久久频这里精品99香蕉久| 91久久婷婷国产综合精品青草| 国产精品一区二区久久精品无码| 久久这里只有精品首页| 国产成人精品久久亚洲高清不卡| 亚洲AV无码久久| 国产精品成人久久久| 亚洲国产精品婷婷久久| 精品久久久久久国产潘金莲| 亚洲色欲久久久久综合网| 日韩精品久久久久久| 久久国产热精品波多野结衣AV| 日本国产精品久久| 久久99热狠狠色精品一区| 亚洲国产精品高清久久久| 久久久久久久国产免费看| 久久91精品国产91久久户| 久久久久亚洲AV无码永不| 久久久国产打桩机| 欧美伊人久久大香线蕉综合| 久久久久免费精品国产| 久久精品国产亚洲AV无码麻豆| 久久久久国产精品嫩草影院| 亚洲AV伊人久久青青草原| 久久综合一区二区无码| 一级做a爰片久久毛片免费陪| 国产精品美女久久久免费| 亚洲成色999久久网站| 超级碰久久免费公开视频| 国产精品免费久久久久电影网| 青青青青久久精品国产| 久久精品国产福利国产琪琪| 久久国产精品二国产精品| 久久无码人妻精品一区二区三区 | 精品久久久久久| 草草久久久无码国产专区| 久久精品亚洲精品国产欧美|