青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2025年9月>
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Mahalanobis distance 馬氏距離

  In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

 

Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

 d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

where σi is the standard deviation of the xi over the sample set.

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

Relationship to leverage

Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

Mahalanobis distance = (N ? 1)(h ? 1/N).

Applications

Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

 

多維高斯分布的指數項!做分類聚類的時候用的比較多

posted on 2010-10-12 09:47 Sosi 閱讀(2340) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲第一久久影院| 国产伦理精品不卡| 亚洲精品日本| 91久久国产精品91久久性色| 亚洲黄色在线看| 亚洲精品乱码| 一区二区三区av| 欧美一区二区三区四区高清| 久久午夜视频| 欧美日韩一区二区在线观看视频| 欧美日韩免费网站| 国产人久久人人人人爽| 1000精品久久久久久久久| 亚洲午夜国产一区99re久久 | 欧美大色视频| 国产精品久久久久久久久久久久久久| 国产精品美女久久久| 一区二区三区在线高清| 9国产精品视频| 久久久久国产精品一区三寸| 亚洲精品1区2区| 欧美一区国产二区| 欧美日韩一区视频| 亚洲韩国日本中文字幕| 欧美在线一区二区三区| 亚洲第一页自拍| 欧美亚洲一区二区在线| 欧美日韩国产丝袜另类| 一色屋精品视频免费看| 亚洲欧美精品| 亚洲国产专区校园欧美| 久久国产精品亚洲va麻豆| 欧美日韩一区精品| 亚洲国产美女| 久久免费视频一区| 在线视频精品| 欧美精品一区二区视频 | 亚洲综合激情| 亚洲老板91色精品久久| 蜜桃久久av| 国内精品视频在线观看| 亚洲欧美一区二区三区极速播放| 亚洲二区在线| 久热re这里精品视频在线6| 国产目拍亚洲精品99久久精品| 亚洲精品在线观| 欧美成人精品h版在线观看| 欧美在线www| 国产农村妇女精品一区二区| 亚洲在线第一页| 日韩午夜视频在线观看| 欧美激情综合色| 亚洲精品免费在线观看| 欧美激情视频一区二区三区在线播放| 久久av一区二区三区| 国产日韩欧美91| 欧美中文字幕在线| 亚洲欧美激情诱惑| 国产精品久久久久久影视| 亚洲午夜电影网| 中文在线不卡视频| 欧美视频免费在线| 亚洲视频在线播放| 亚洲视频在线免费观看| 国产精品久久久久久超碰| 性欧美暴力猛交另类hd| 午夜精品av| 伊人精品成人久久综合软件| 亚洲第一精品福利| 欧美v国产在线一区二区三区| 久久综合精品国产一区二区三区| 有码中文亚洲精品| 亚洲国产精品999| 欧美日韩国产在线| 亚洲欧美在线另类| 久久国产主播精品| 亚洲三级视频| 亚洲深夜影院| 精品51国产黑色丝袜高跟鞋| 欧美岛国激情| 欧美日韩综合网| 久久激情婷婷| 欧美福利视频网站| 亚洲欧美日韩一区二区三区在线观看 | 国产一区在线观看视频| 美女精品自拍一二三四| 欧美成人免费视频| 亚洲欧美成人在线| 久久精品人人做人人爽| 99国产精品久久久久久久| 亚洲欧美三级在线| 91久久在线| 亚洲欧美日韩在线高清直播| 亚洲国产日韩在线| 在线一区二区三区四区五区| 韩国av一区二区三区在线观看| 欧美不卡视频一区| 国产精品一级久久久| 亚洲国产毛片完整版| 国产伦精品一区二区| 欧美激情在线有限公司| 国产精品一卡二卡| 欧美高清成人| 国产日本欧美在线观看| 亚洲日本成人在线观看| 国产自产高清不卡| 在线中文字幕日韩| 亚洲日本欧美| 久久精品国亚洲| 亚洲男人av电影| 欧美大片免费观看| 久久全球大尺度高清视频| 欧美色欧美亚洲高清在线视频| 久久先锋资源| 国产日韩1区| 亚洲午夜精品一区二区三区他趣| 亚洲国产导航| 久久国产视频网| 欧美亚洲在线视频| 国产精品成人免费| 亚洲精品久久久一区二区三区| 一区免费观看| 欧美综合77777色婷婷| 欧美在现视频| 国产精品一区免费视频| 亚洲小视频在线| 亚洲欧美国产精品桃花| 欧美午夜精品| 一本色道久久88精品综合| 一区二区三区成人精品| 在线视频日本亚洲性| 亚洲免费精彩视频| 欧美激情二区三区| 亚洲国产一区二区三区a毛片| 亚洲国产精品t66y| 久久一区亚洲| 欧美国产三级| 亚洲日本激情| 欧美激情亚洲一区| 亚洲精品社区| 亚洲影院免费| 国产精品三级久久久久久电影| 国产精品99久久久久久人| 亚洲综合欧美| 欧美三级网页| 亚洲欧美日韩精品久久奇米色影视 | 欧美中文在线观看| 久久精品视频99| 一区二区视频欧美| 久久久噜噜噜久久人人看| 欧美.www| 99热免费精品| 国产精品久久久久久影视| 亚洲女同精品视频| 久久精品国产清自在天天线| 黄色亚洲在线| 欧美+亚洲+精品+三区| 亚洲欧洲免费视频| 午夜日韩视频| 亚洲福利视频在线| 欧美日韩午夜在线| 欧美一区二区免费| 欧美激情导航| 亚洲永久免费观看| 好吊成人免视频| 欧美不卡高清| 亚洲一二三区视频在线观看| 久久一区二区三区国产精品| 亚洲精华国产欧美| 国产精品二区影院| 久久久久久久久岛国免费| 亚洲丰满在线| 欧美在线观看视频| 亚洲欧洲精品一区二区三区波多野1战4 | 亚洲国产午夜| 午夜精品久久久久久久蜜桃app | 亚洲无线观看| 在线精品视频一区二区| 欧美日韩另类国产亚洲欧美一级| 亚洲一区免费视频| 欧美国产第一页| 欧美一区二区三区婷婷月色| 91久久夜色精品国产九色| 国产日韩高清一区二区三区在线| 欧美国产日韩一区| 久久嫩草精品久久久久| 一本久道久久综合婷婷鲸鱼| 国产一区二区中文| 欧美日韩一级片在线观看| 久久免费精品日本久久中文字幕| 一本大道久久a久久精二百| 欧美xx视频| 久久久久**毛片大全| 亚洲免费影视| 在线一区免费观看| 日韩午夜免费视频| 亚洲人成在线观看网站高清| 黄色另类av| 国产视频一区二区三区在线观看| 欧美日韩一二区|