青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年9月>
2930311234
567891011
12131415161718
19202122232425
262728293012
3456789

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數據:觀測到的隨機變量X的IID樣本:

image

缺失數據:未觀測到的隱含變量(隱變量)Y的值:

image

完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

 

似然函數:(似然函數的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數為:

image

E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2533) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲第一页在线| 欧美成人一区二区| av72成人在线| 欧美日韩精品欧美日韩精品| 亚洲人成网站影音先锋播放| 亚洲第一精品夜夜躁人人爽| 欧美成人嫩草网站| 一本久久a久久免费精品不卡| 亚洲国产精品999| 欧美日韩精品一区二区在线播放 | 亚洲激情视频| 亚洲国产aⅴ天堂久久| 欧美激情一区二区在线| 亚洲一区综合| 久久国产精品72免费观看| 樱花yy私人影院亚洲| 欧美激情一区二区三级高清视频| 欧美精品激情在线观看| 香港久久久电影| 久久久久久一区二区| 一区二区三区色| 亚洲欧美成人| 亚洲国产精品美女| 亚洲午夜激情免费视频| 狠狠综合久久| 99视频一区二区三区| 韩日午夜在线资源一区二区| 亚洲国产日韩欧美在线99| 国产精品欧美激情| 欧美va亚洲va日韩∨a综合色| 欧美另类一区| 久久综合免费视频影院| 欧美日韩综合另类| 免费不卡亚洲欧美| 国产精品视频大全| 91久久在线| 黄网站色欧美视频| 妖精成人www高清在线观看| 精品电影一区| 亚洲一区欧美一区| 日韩一二三区视频| 久久久久国产精品一区二区| 亚洲综合色婷婷| 欧美激情视频一区二区三区在线播放 | 欧美风情在线| 久久综合色婷婷| 国产精品一区二区三区成人| 亚洲国产精品一区二区第一页| 国产欧美一区二区精品婷婷| 亚洲精品在线观看免费| 亚洲国产美女| 久久久久欧美| 久久影院亚洲| 国产色综合天天综合网| 亚洲天堂男人| 亚洲在线观看免费| 欧美日韩大片| 亚洲精品国产系列| 亚洲人体偷拍| 欧美aa在线视频| 欧美激情aaaa| 亚洲人成在线观看网站高清| 久久午夜精品| 蜜桃av噜噜一区| 一区二区在线不卡| 久久久噜噜噜久久久| 久久夜色精品国产亚洲aⅴ| 国产亚洲亚洲| 久久精品导航| 蜜臀a∨国产成人精品| 在线免费日韩片| 久久久欧美一区二区| 麻豆精品精华液| 在线精品一区| 欧美激情视频在线播放 | 亚洲激情中文1区| 亚洲精品综合精品自拍| 欧美激情成人在线| 亚洲精品在线视频| 亚洲女人天堂av| 国产婷婷色一区二区三区四区| 午夜一级在线看亚洲| 久久久不卡网国产精品一区| 经典三级久久| 欧美成人午夜剧场免费观看| 亚洲肉体裸体xxxx137| 亚洲视频成人| 国产手机视频一区二区| 久久精品成人一区二区三区 | 亚洲亚洲精品三区日韩精品在线视频| 欧美午夜激情小视频| 亚洲欧美在线aaa| 美日韩免费视频| 在线综合视频| 国产欧美日韩综合一区在线观看| 欧美一区2区三区4区公司二百| 免费观看日韩av| 亚洲天堂网在线观看| 国产亚洲精品aa| 欧美精品亚洲| 欧美一区二区三区精品| 亚洲成人资源网| 欧美在线视频免费| 亚洲美女av网站| 国产日韩亚洲欧美| 欧美精品入口| 久久不射中文字幕| 亚洲毛片一区| 麻豆精品精华液| 亚洲欧美视频一区| 91久久精品国产91性色| 国产欧美日韩视频在线观看 | 一区二区三区久久网| 美日韩精品免费| 香蕉久久一区二区不卡无毒影院| 亚洲成色精品| 国产偷自视频区视频一区二区| 欧美成人精精品一区二区频| 性色一区二区三区| 一本色道久久综合狠狠躁的推荐| 久久蜜臀精品av| 午夜伦欧美伦电影理论片| 亚洲欧洲中文日韩久久av乱码| 国产乱人伦精品一区二区| 欧美老女人xx| 免费欧美电影| 久久夜色精品国产| 久久福利资源站| 欧美亚洲网站| 亚洲伊人久久综合| 一区二区三区黄色| 91久久精品国产91久久性色| 麻豆精品传媒视频| 久久免费精品视频| 欧美一区二区在线免费播放| 亚洲一区三区电影在线观看| 亚洲精选国产| 亚洲日本中文字幕区 | 欧美精品色综合| 欧美韩国日本一区| 欧美成年人网站| 免费成人av在线看| 欧美成人免费网站| 欧美电影免费观看网站 | 亚洲精品中文在线| 亚洲欧洲精品成人久久奇米网| 欧美成人免费网| 亚洲电影免费在线| 亚洲国产黄色片| 亚洲欧洲午夜| 一本色道久久综合亚洲精品不卡| 91久久久久久久久久久久久| 亚洲国产第一| 日韩视频一区二区三区在线播放 | 久久综合一区二区| 老司机一区二区| 欧美黄污视频| 亚洲免费激情| 亚洲欧美一级二级三级| 欧美在线观看视频在线| 久久综合给合| 欧美日本不卡视频| 国产精品毛片a∨一区二区三区| 国产精品美女| 影音国产精品| 亚洲深夜福利| 久久高清国产| 欧美激情一区在线观看| 亚洲免费观看高清完整版在线观看熊 | 国产精品毛片大码女人| 国产视频久久久久久久| 一区二区三区在线观看国产| 亚洲茄子视频| 欧美亚洲免费电影| 蜜臀av性久久久久蜜臀aⅴ| 91久久精品国产91性色| 在线一区二区三区四区五区| 欧美专区第一页| 欧美精品午夜| 国内精品视频一区| 99热精品在线观看| 久久国产88| 亚洲精品之草原avav久久| 性久久久久久久久| 欧美精品手机在线| 国产一区二区三区免费不卡| 亚洲精选91| 久久久久久久高潮| 一本大道久久a久久精品综合| 亚洲视频久久| 欧美不卡高清| 国产一区深夜福利| 在线中文字幕一区| 欧美成人免费在线视频| 亚洲免费在线精品一区| 欧美激情一区二区三区蜜桃视频| 国产日韩专区在线| 亚洲婷婷综合久久一本伊一区| 久久亚洲综合网| 亚洲综合电影一区二区三区|