青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Mahalanobis distance 馬氏距離

  In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

 

Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

 d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

where σi is the standard deviation of the xi over the sample set.

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

Relationship to leverage

Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

Mahalanobis distance = (N ? 1)(h ? 1/N).

Applications

Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

 

多維高斯分布的指數項!做分類聚類的時候用的比較多

posted on 2010-10-12 09:47 Sosi 閱讀(2340) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            欧美1区2区视频| 国产欧美在线看| 欧美影片第一页| 亚洲精品综合精品自拍| 国产精品久久久久7777婷婷| 蜜臀av一级做a爰片久久| 99综合电影在线视频| 欧美成人一区二区三区| 久久中文欧美| 欧美成人自拍视频| 亚洲高清久久久| 久久精品麻豆| 久久在线精品| 免费亚洲婷婷| 亚洲国产三级网| 亚洲七七久久综合桃花剧情介绍| 亚洲成在线观看| 亚洲女与黑人做爰| 亚洲一区久久久| 欧美专区亚洲专区| 鲁大师成人一区二区三区| 欧美国产在线视频| 亚洲在线免费视频| 欧美大片一区二区| 欧美三级午夜理伦三级中文幕| 国产精品入口夜色视频大尺度| 国产女人精品视频| 在线欧美日韩精品| 亚洲欧美伊人| 日韩午夜黄色| 狂野欧美激情性xxxx欧美| 国产精品欧美日韩一区二区| 在线视频国产日韩| 欧美在线观看网址综合| 99国产精品国产精品毛片| 久久爱另类一区二区小说| 欧美日韩国产成人在线91| 在线精品国产成人综合| 久久精品欧洲| 欧美一级视频精品观看| 国产精品黄视频| 亚洲性线免费观看视频成熟| 亚洲人被黑人高潮完整版| 久久久久久久一区二区| 亚洲国产精品t66y| 蜜臀a∨国产成人精品| 久久aⅴ国产欧美74aaa| 国产日韩欧美中文| 欧美一区日本一区韩国一区| 亚洲伊人第一页| 国产精品看片你懂得| 国产老肥熟一区二区三区| 激情欧美一区二区三区在线观看| 欧美在线精品免播放器视频| 欧美亚洲一区三区| 一区二区三区在线观看欧美| 免费试看一区| 国产精品久久久久久久久借妻 | 欧美成人综合| 欧美不卡视频一区发布| 99视频在线观看一区三区| 中文在线一区| 在线精品一区二区| 亚洲图片在线| 亚洲精品欧美| 久久久久网站| 香蕉成人伊视频在线观看| 久久久综合免费视频| 亚洲五月婷婷| 女女同性女同一区二区三区91| 日韩视频一区二区| 午夜欧美不卡精品aaaaa| 一区二区精品在线观看| 欧美影院精品一区| 午夜精彩视频在线观看不卡 | 久久噜噜亚洲综合| 欧美大片免费观看| 久久精品亚洲精品| 国产精品欧美经典| 99精品免费| 亚洲精品一区二区网址| 久久aⅴ国产欧美74aaa| 欧美亚洲免费电影| 欧美午夜无遮挡| 亚洲国产成人高清精品| 亚洲欧美日韩国产一区二区三区| 日韩视频一区二区在线观看| 久久性天堂网| 免费人成网站在线观看欧美高清| 国产在线视频欧美| 欧美专区18| 久久免费视频在线观看| 国产老肥熟一区二区三区| 亚洲在线一区二区三区| 一区二区电影免费观看| 欧美日韩国语| 欧美一区二区三区四区高清| 久久久久久久综合狠狠综合| 欧美国产免费| 一区二区三区久久网| 久久国产精品99国产精| 亚洲高清不卡在线| 欧美日韩综合久久| 性做久久久久久久免费看| 久久综合精品一区| 亚洲在线第一页| 在线电影院国产精品| 欧美三级视频在线播放| 久久露脸国产精品| 亚洲精品视频免费在线观看| 欧美一区二区在线看| 亚洲激情第一区| 国产精品一区二区三区四区| 美日韩丰满少妇在线观看| 亚洲茄子视频| 欧美粗暴jizz性欧美20| 欧美在线国产精品| 亚洲影音一区| 99伊人成综合| 亚洲巨乳在线| 91久久线看在观草草青青| 国产一区二区观看| 国产三级欧美三级日产三级99| 亚洲电影视频在线| 久久麻豆一区二区| 久久久久国产一区二区三区四区| 亚洲尤物在线视频观看| 久久久不卡网国产精品一区| 欧美激情一区二区三级高清视频| 日韩一级免费| 亚洲区中文字幕| 国产精品国产a级| 亚洲一区bb| 老鸭窝91久久精品色噜噜导演| 国产欧美日韩在线播放| 久久久www成人免费毛片麻豆| 免播放器亚洲| 国产日本亚洲高清| 久久综合给合久久狠狠狠97色69| 亚洲欧美在线高清| 久久精品综合一区| 亚洲国产精品久久人人爱蜜臀| 亚洲美女黄网| 亚洲天堂av在线免费| 亚洲美女精品一区| 亚洲欧美999| 可以免费看不卡的av网站| 欧美日韩精品一本二本三本| 国产嫩草影院久久久久| 国产精品天天摸av网| 亚洲第一成人在线| 亚洲欧美另类在线观看| 欧美va日韩va| 久久久国际精品| 麻豆91精品91久久久的内涵| 午夜精品久久久久久 | 久久国产黑丝| 国产精品免费福利| 在线午夜精品自拍| 欧美激情精品久久久久| 久久尤物电影视频在线观看| 国产一区视频观看| 久久亚洲捆绑美女| 国产精品实拍| 久久国产视频网站| 亚洲欧美日本日韩| 国产亚洲成精品久久| 久久久欧美精品| 久久精品91| 亚洲国产欧美一区二区三区同亚洲| 久久久久se| 欧美成人资源网| 一本久久综合亚洲鲁鲁| 中文网丁香综合网| 国产视频在线观看一区| 欧美在线三区| 久久综合网hezyo| 日韩视频一区二区三区在线播放| 亚洲欧美日韩成人高清在线一区| 亚洲视频图片小说| 极品少妇一区二区三区| 欧美国产国产综合| 欧美体内谢she精2性欧美| 亚洲欧美日韩在线不卡| 久久精品首页| 欧美一级成年大片在线观看| 免费黄网站欧美| 香蕉久久夜色精品国产| 久久夜色精品国产欧美乱| 亚洲天堂视频在线观看| 欧美资源在线| 性欧美videos另类喷潮| 欧美久久久久久久| 欧美激情一区在线| 韩日成人av| 午夜综合激情| 久久男女视频| 国产日韩专区在线| 午夜精品视频| 久久精品亚洲国产奇米99|