• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            統(tǒng)計(jì)

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Kullback–Leibler divergence KL散度

            In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two probability distributions P and Q. KL measures the expected number of extra bits required to code samples from P when using a code based on Q, rather than using a code based on P. Typically P represents the "true" distribution of data, observations, or a precise calculated theoretical distribution. The measure Q typically represents a theory, model, description, or approximation of P.

            Although it is often intuited as a distance metric, the KL divergence is not a true metric – for example, the KL from P to Q is not necessarily the same as the KL from Q to P.

            KL divergence is a special case of a broader class of divergences called f-divergences. Originally introduced by Solomon Kullbackand Richard Leibler in 1951 as the directed divergence between two distributions, it is not the same as a divergence incalculus. However, the KL divergence can be derived from the Bregman divergence.

             

             

            注意P通常指數(shù)據(jù)集,我們已有的數(shù)據(jù)集,Q表示理論結(jié)果,所以KL divergence 的物理含義就是當(dāng)用Q來編碼P中的采樣時(shí),比用P來編碼P中的采用需要多用的位數(shù)!

             

            KL散度,也有人稱為KL距離,但是它并不是嚴(yán)格的距離概念,其不滿足三角不等式

             

            KL散度是不對稱的,當(dāng)然,如果希望把它變對稱,

            Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2

             

            下面是KL散度的離散和連續(xù)定義!

            D_{\mathrm{KL}}(P\|Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)}. \!

            D_{\mathrm{KL}}(P\|Q) = \int_{-\infty}^\infty p(x) \log \frac{p(x)}{q(x)} \; dx, \!

            注意的一點(diǎn)是p(x) 和q(x)分別是pq兩個(gè)隨機(jī)變量的PDF,D(P||Q)是一個(gè)數(shù)值,而不是一個(gè)函數(shù),看下圖!

             

            注意:KL Area to be Integrated!

             

            File:KL-Gauss-Example.png

             

            KL 散度一個(gè)很強(qiáng)大的性質(zhì):

            The Kullback–Leibler divergence is always non-negative,

            D_{\mathrm{KL}}(P\|Q) \geq 0, \,

            a result known as , with DKL(P||Q) zero if and only if P = Q.

             

            計(jì)算KL散度的時(shí)候,注意問題是在稀疏數(shù)據(jù)集上KL散度計(jì)算通常會出現(xiàn)分母為零的情況!

             

             

            Matlab中的函數(shù):KLDIV給出了兩個(gè)分布的KL散度

            Description

            KLDIV Kullback-Leibler or Jensen-Shannon divergence between two distributions.

            KLDIV(X,P1,P2) returns the Kullback-Leibler divergence between two distributions specified over the M variable values in vector X. P1 is a length-M vector of probabilities representing distribution 1, and P2 is a length-M vector of probabilities representing distribution 2. Thus, the probability of value X(i) is P1(i) for distribution 1 and P2(i) for distribution 2. The Kullback-Leibler divergence is given by:

               KL(P1(x),P2(x)) = sum[P1(x).log(P1(x)/P2(x))]

            If X contains duplicate values, there will be an warning message, and these values will be treated as distinct values. (I.e., the actual values do not enter into the computation, but the probabilities for the two duplicate values will be considered as probabilities corresponding to two unique values.) The elements of probability vectors P1 and P2 must each sum to 1 +/- .00001.

            A "log of zero" warning will be thrown for zero-valued probabilities. Handle this however you wish. Adding 'eps' or some other small value to all probabilities seems reasonable. (Renormalize if necessary.)

            KLDIV(X,P1,P2,'sym') returns a symmetric variant of the Kullback-Leibler divergence, given by [KL(P1,P2)+KL(P2,P1)]/2. See Johnson and Sinanovic (2001).

            KLDIV(X,P1,P2,'js') returns the Jensen-Shannon divergence, given by [KL(P1,Q)+KL(P2,Q)]/2, where Q = (P1+P2)/2. See the Wikipedia article for "Kullback–Leibler divergence". This is equal to 1/2 the so-called "Jeffrey divergence." See Rubner et al. (2000).

            EXAMPLE: Let the event set and probability sets be as follow:
               X = [1 2 3 3 4]';
               P1 = ones(5,1)/5;
               P2 = [0 0 .5 .2 .3]' + eps;
            Note that the event set here has duplicate values (two 3's). These will be treated as DISTINCT events by KLDIV. If you want these to be treated as the SAME event, you will need to collapse their probabilities together before running KLDIV. One way to do this is to use UNIQUE to find the set of unique events, and then iterate over that set, summing probabilities for each instance of each unique event. Here, we just leave the duplicate values to be treated independently (the default):
               KL = kldiv(X,P1,P2);
               KL =
                    19.4899

            Note also that we avoided the log-of-zero warning by adding 'eps' to all probability values in P2. We didn't need to renormalize because we're still within the sum-to-one tolerance.

            REFERENCES:
            1) Cover, T.M. and J.A. Thomas. "Elements of Information Theory," Wiley, 1991.
            2) Johnson, D.H. and S. Sinanovic. "Symmetrizing the Kullback-Leibler distance." IEEE Transactions on Information Theory (Submitted).
            3) Rubner, Y., Tomasi, C., and Guibas, L. J., 2000. "The Earth Mover's distance as a metric for image retrieval." International Journal of Computer Vision, 40(2): 99-121.
            4) <a href="
            http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence"&gt;Kullback–Leibler divergence</a>. Wikipedia, The Free Encyclopedia.

            posted on 2010-10-16 15:04 Sosi 閱讀(10017) 評論(2)  編輯 收藏 引用 所屬分類: Taps in Research

            評論

            # re: Kullback&ndash;Leibler divergence KL散度 2010-11-30 16:17 tintin0324

            博主,本人的研究方向需要了解kl距離,有些問題想請教下,怎么聯(lián)系呢?
              回復(fù)  更多評論    

            # re: Kullback&ndash;Leibler divergence KL散度 2010-12-05 22:37 Sosi

            @tintin0324
            KL 距離本身很簡單,如果就是那樣子定義的,意義也如上面所說。。如果你想深入了解的話,可以讀以下相關(guān)文獻(xiàn)
              回復(fù)  更多評論    
            統(tǒng)計(jì)系統(tǒng)
            国产成人久久激情91| 久久精品国产亚洲AV蜜臀色欲| 无码精品久久久久久人妻中字| 三上悠亚久久精品| 91精品久久久久久无码| 久久亚洲国产精品成人AV秋霞| 久久久无码人妻精品无码| 国产精品免费久久久久影院| 久久无码专区国产精品发布| 99久久99久久精品国产片果冻| 一本一道久久综合狠狠老| 国产午夜福利精品久久| 亚洲欧美日韩久久精品第一区| 国产成人久久久精品二区三区| 久久精品国产亚洲αv忘忧草| 久久久久国产精品| 久久超碰97人人做人人爱| 一本一道久久a久久精品综合 | 亚洲美日韩Av中文字幕无码久久久妻妇| 国产精品久久婷婷六月丁香| 国产AV影片久久久久久| 久久久久亚洲Av无码专| 日本五月天婷久久网站| 色综合久久久久综合99| 日本高清无卡码一区二区久久| 青青青国产精品国产精品久久久久 | 热综合一本伊人久久精品| 久久精品国产亚洲沈樵| av无码久久久久不卡免费网站| 国产毛片欧美毛片久久久| 亚洲午夜精品久久久久久app| 久久精品亚洲欧美日韩久久| 国产一区二区三精品久久久无广告 | 99精品伊人久久久大香线蕉| 久久久久亚洲精品天堂| 亚洲AV无码久久| 久久久久se色偷偷亚洲精品av| 久久久午夜精品福利内容| 色播久久人人爽人人爽人人片aV| 久久男人AV资源网站| 久久综合视频网|