• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(348) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統計系統
            国产成人久久777777| 精品久久久久久国产91| 欧美一区二区久久精品| 久久久WWW成人免费毛片| 麻豆精品久久久久久久99蜜桃| 久久亚洲精品中文字幕| 99久久精品九九亚洲精品| 亚洲七七久久精品中文国产| 久久人人爽人人爽人人片av高请| 蜜桃麻豆www久久| 久久大香萑太香蕉av| 久久成人影院精品777| 久久精品国产99久久久古代| 国产精品九九久久免费视频 | 中文字幕久久精品| 久久精品一区二区国产| 国产精品99久久久精品无码 | 久久国产精品视频| 色狠狠久久AV五月综合| 国产综合成人久久大片91| 国产精品免费看久久久| 亚洲精品无码久久不卡| 国产69精品久久久久99| 久久天天躁狠狠躁夜夜avapp | 精品国产乱码久久久久久1区2区| 亚洲综合久久夜AV | 国产精品免费久久久久久久久| 久久精品中文闷骚内射| 思思久久好好热精品国产| 国产福利电影一区二区三区,免费久久久久久久精 | 国产精品九九久久免费视频 | 人妻丰满AV无码久久不卡| 中文成人无码精品久久久不卡| 久久精品无码一区二区日韩AV| 伊人热人久久中文字幕| 婷婷久久综合九色综合98| 丰满少妇高潮惨叫久久久| 97久久精品无码一区二区天美 | 久久久国产精品| 久久久精品人妻无码专区不卡| 久久亚洲高清综合|