• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統(tǒng)計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(357) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統(tǒng)計系統(tǒng)
            人妻无码精品久久亚瑟影视| 久久亚洲精精品中文字幕| 青青草原综合久久大伊人导航| 香蕉aa三级久久毛片| 无码人妻久久一区二区三区免费| 成人资源影音先锋久久资源网| 久久青青草原综合伊人| 久久精品国产男包| 香港aa三级久久三级| 久久婷婷国产综合精品| 欧美日韩成人精品久久久免费看| 久久夜色精品国产噜噜噜亚洲AV| 久久精品国产只有精品66| 国产91色综合久久免费分享| 久久久精品人妻一区二区三区蜜桃| 国产99精品久久| 久久精品国产99国产精品导航| 久久久久久亚洲精品不卡| 国产精品久久99| 成人妇女免费播放久久久| 国产精品99久久久精品无码| 久久久噜噜噜久久| 国产精品综合久久第一页| 国产精品久久久久久影院| 成人综合伊人五月婷久久| 久久人人爽人人爽人人片av高请| 久久国产成人午夜aⅴ影院| 国产精品无码久久久久| AA级片免费看视频久久| 色噜噜狠狠先锋影音久久| 国产欧美久久一区二区| 国产美女久久精品香蕉69| 性欧美丰满熟妇XXXX性久久久 | 久久久久se色偷偷亚洲精品av| 久久天天日天天操综合伊人av| 久久成人精品| 久久综合久久伊人| 精品综合久久久久久98| 日韩人妻无码一区二区三区久久| 久久精品国产亚洲AV香蕉| 久久婷婷五月综合国产尤物app|