• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POI 2001 Peaceful Commission 2-SAT問題

            The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

            The Commission has to fulfill the following conditions:

            • Each party has exactly one representative in the Commission,
            • If two deputies do not like each other, they cannot both belong to the Commission.

            Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

            Task

            Write a program, which:

            • reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,
            • decides whether it is possible to establish the Commission, and if so, proposes the list of members,
            • writes the result in the text file SPO.OUT.

            Input

            In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.

            There are multiple test cases. Process to end of file.

            Output

            The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write any of them.

            Sample Input

            3 2
            1 3
            2 4

            Sample Output

            1
            4
            5
            
               最近看了2篇關(guān)于2-SAT問題的IOI論文,對(duì)2-SAT問題的O(m)時(shí)間復(fù)雜度的解法也有了一定的了解,找了道POI 2001的題來做,在WA了無數(shù)次之后終于過了,跑了1.44s,效率還可以。
            2篇論文分別是<<由對(duì)稱性解2-SAT問題>>和<<2-SAT解法淺析>>。
            //2-SAT問題
            //求出所有強(qiáng)連通分量,如果有矛盾點(diǎn)同處于一個(gè)連通分量則無解
            //縮點(diǎn),將原圖反向建立DAG圖
            //按拓?fù)渑判蛑乙粋€(gè)未著色點(diǎn)x,染成紅色
            //將與x矛盾的頂點(diǎn)及其子孫染為藍(lán)色
            //直到所有頂點(diǎn)均被染色,紅色即為2-SAT的一組解
            #include <iostream>
            #include 
            <vector>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 16010;//2*8000
            char color[MAXN];//染色
            bool visit[MAXN];
            queue
            <int> q1,q2;
            vector
            < vector<int> > adj; //原圖
            vector< vector<int> > radj;//逆向圖
            vector< vector<int> > dag; //縮點(diǎn)后的逆向DAG圖
            int n,m,cnt,id[MAXN],order[MAXN],ind[MAXN];//強(qiáng)連通分量,訪問順序,入度

            void dfs(int u){
                visit[u]
            =true;
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[adj[u][i]])
                        dfs(adj[u][i]);
                order[cnt
            ++]=u;
            }

            void rdfs(int u){
                visit[u]
            =true;
                id[u]
            =cnt;
                
            int i,len=radj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[radj[u][i]])
                        rdfs(radj[u][i]);
            }

            void korasaju(){
                
            int i;
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=1;i<=2*n;i++)
                    
            if(!visit[i]) dfs(i);
                memset(id,
            0,sizeof(id));
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=2*n-1;i>=0;i--)
                    
            if(!visit[order[i]])
                        cnt
            ++,rdfs(order[i]);
            }

            bool solvable(){
                
            for(int i=1;i<=n;i++)
                    
            if(id[2*i-1]==id[2*i])
                        
            return false;
                
            return true;
            }

            void topsort(){
                
            int i,j,len,now,p,pid;    
                
            while(!q1.empty()){
                    now
            =q1.front();
                    q1.pop();
                    
            if(color[now]!=0continue ;
                    color[now]
            ='R';
                    ind[now]
            =-1;
                    
            for(i=1;i<=2*n;i++){
                        
            if(id[i]==now){
                            p
            =(i%2)?i+1:i-1;
                            pid
            =id[p];                        
                            q2.push(pid);
                            
            while(!q2.empty()){
                                pid
            =q2.front();
                                q2.pop();
                                
            if(color[pid]=='B'continue ;            
                                color[pid]
            ='B';
                                
            int len=dag[pid].size();
                                
            for(j=0;j<len;j++)
                                    q2.push(dag[pid][j]);
                            }

                        }

                    }

                    len
            =dag[now].size();
                    
            for(i=0;i<len;i++){
                        ind[dag[now][i]]
            --;
                        
            if(ind[dag[now][i]]==0) q1.push(dag[now][i]);        
                    }

                }

            }

            int main(){
                
            int i,j,x,y,xx,yy,len;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    adj.assign(
            2*n+1,vector<int>());
                    radj.assign(
            2*n+1,vector<int>());
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d",&x,&y);
                        xx
            =(x%2)?x+1:x-1;
                        yy
            =(y%2)?y+1:y-1;
                        adj[x].push_back(yy);
                        adj[y].push_back(xx);
                        radj[yy].push_back(x);
                        radj[xx].push_back(y);
                    }

                    korasaju();
                    
            if(!solvable()) puts("NIE");
                    
            else{
                        dag.assign(cnt
            +1,vector<int>());
                        memset(ind,
            0,sizeof(ind));
                        memset(color,
            0,sizeof(color));
                        
            for(i=1;i<=2*n;i++){
                            len
            =adj[i].size();
                            
            for(j=0;j<len;j++)
                                
            if(id[i]!=id[adj[i][j]]){
                                    dag[id[adj[i][j]]].push_back(id[i]);
                                    ind[id[i]]
            ++;
                                }

                        }

                        
            for(i=1;i<=cnt;i++)
                            
            if(ind[i]==0) q1.push(i);
                        topsort();
                        
            for(i=1;i<=n;i++){
                            
            if(color[id[2*i-1]]=='R') printf("%d\n",2*i-1);
                            
            else printf("%d\n",2*i);
                        }

                    }

                }

                
            return 0;
            }

            posted on 2009-06-07 18:59 極限定律 閱讀(1182) 評(píng)論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評(píng)論

            # re: POI 2001 Peaceful Commission 2-SAT問題 2014-05-05 12:35 zzhhbyt

            您用的求scc的算法應(yīng)該是叫做kosaraju而不是korasaju吧?  回復(fù)  更多評(píng)論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            91精品国产乱码久久久久久 | 综合久久精品色| 性做久久久久久久久| 国产午夜免费高清久久影院| 久久亚洲AV无码西西人体| 精品久久久久久无码专区不卡 | 久久精品国产久精国产思思| 日韩欧美亚洲国产精品字幕久久久| 亚洲国产天堂久久久久久| 浪潮AV色综合久久天堂| 97精品依人久久久大香线蕉97| 久久人搡人人玩人妻精品首页| 狠狠精品久久久无码中文字幕 | 国产AⅤ精品一区二区三区久久| 久久人人爽人人爽人人AV| 色成年激情久久综合| 99国产欧美久久久精品蜜芽| 日日狠狠久久偷偷色综合免费 | 日韩av无码久久精品免费| 大美女久久久久久j久久| 久久久久99精品成人片欧美| 亚洲精品国产自在久久| 伊人久久综合热线大杳蕉下载| 7777久久亚洲中文字幕| 国内精品久久国产| 亚洲乱码中文字幕久久孕妇黑人| 久久久久高潮综合影院| 欧洲精品久久久av无码电影| 亚洲欧美日韩久久精品| 久久久久国产一区二区三区| 热久久国产欧美一区二区精品| 国产精品久久99| 91久久精品91久久性色| 国产综合久久久久| 99久久久精品免费观看国产| 精品久久久久中文字幕日本| 久久99精品久久久久久动态图 | 国内精品欧美久久精品| 香蕉99久久国产综合精品宅男自 | 99精品久久久久久久婷婷| 99久久99这里只有免费的精品|