• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POI 2001 Peaceful Commission 2-SAT問題

            The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

            The Commission has to fulfill the following conditions:

            • Each party has exactly one representative in the Commission,
            • If two deputies do not like each other, they cannot both belong to the Commission.

            Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

            Task

            Write a program, which:

            • reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,
            • decides whether it is possible to establish the Commission, and if so, proposes the list of members,
            • writes the result in the text file SPO.OUT.

            Input

            In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.

            There are multiple test cases. Process to end of file.

            Output

            The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write any of them.

            Sample Input

            3 2
            1 3
            2 4

            Sample Output

            1
            4
            5
            
               最近看了2篇關于2-SAT問題的IOI論文,對2-SAT問題的O(m)時間復雜度的解法也有了一定的了解,找了道POI 2001的題來做,在WA了無數次之后終于過了,跑了1.44s,效率還可以。
            2篇論文分別是<<由對稱性解2-SAT問題>>和<<2-SAT解法淺析>>。
            //2-SAT問題
            //求出所有強連通分量,如果有矛盾點同處于一個連通分量則無解
            //縮點,將原圖反向建立DAG圖
            //按拓撲排序著色,找一個未著色點x,染成紅色
            //將與x矛盾的頂點及其子孫染為藍色
            //直到所有頂點均被染色,紅色即為2-SAT的一組解
            #include <iostream>
            #include 
            <vector>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 16010;//2*8000
            char color[MAXN];//染色
            bool visit[MAXN];
            queue
            <int> q1,q2;
            vector
            < vector<int> > adj; //原圖
            vector< vector<int> > radj;//逆向圖
            vector< vector<int> > dag; //縮點后的逆向DAG圖
            int n,m,cnt,id[MAXN],order[MAXN],ind[MAXN];//強連通分量,訪問順序,入度

            void dfs(int u){
                visit[u]
            =true;
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[adj[u][i]])
                        dfs(adj[u][i]);
                order[cnt
            ++]=u;
            }

            void rdfs(int u){
                visit[u]
            =true;
                id[u]
            =cnt;
                
            int i,len=radj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[radj[u][i]])
                        rdfs(radj[u][i]);
            }

            void korasaju(){
                
            int i;
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=1;i<=2*n;i++)
                    
            if(!visit[i]) dfs(i);
                memset(id,
            0,sizeof(id));
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=2*n-1;i>=0;i--)
                    
            if(!visit[order[i]])
                        cnt
            ++,rdfs(order[i]);
            }

            bool solvable(){
                
            for(int i=1;i<=n;i++)
                    
            if(id[2*i-1]==id[2*i])
                        
            return false;
                
            return true;
            }

            void topsort(){
                
            int i,j,len,now,p,pid;    
                
            while(!q1.empty()){
                    now
            =q1.front();
                    q1.pop();
                    
            if(color[now]!=0continue ;
                    color[now]
            ='R';
                    ind[now]
            =-1;
                    
            for(i=1;i<=2*n;i++){
                        
            if(id[i]==now){
                            p
            =(i%2)?i+1:i-1;
                            pid
            =id[p];                        
                            q2.push(pid);
                            
            while(!q2.empty()){
                                pid
            =q2.front();
                                q2.pop();
                                
            if(color[pid]=='B'continue ;            
                                color[pid]
            ='B';
                                
            int len=dag[pid].size();
                                
            for(j=0;j<len;j++)
                                    q2.push(dag[pid][j]);
                            }

                        }

                    }

                    len
            =dag[now].size();
                    
            for(i=0;i<len;i++){
                        ind[dag[now][i]]
            --;
                        
            if(ind[dag[now][i]]==0) q1.push(dag[now][i]);        
                    }

                }

            }

            int main(){
                
            int i,j,x,y,xx,yy,len;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    adj.assign(
            2*n+1,vector<int>());
                    radj.assign(
            2*n+1,vector<int>());
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d",&x,&y);
                        xx
            =(x%2)?x+1:x-1;
                        yy
            =(y%2)?y+1:y-1;
                        adj[x].push_back(yy);
                        adj[y].push_back(xx);
                        radj[yy].push_back(x);
                        radj[xx].push_back(y);
                    }

                    korasaju();
                    
            if(!solvable()) puts("NIE");
                    
            else{
                        dag.assign(cnt
            +1,vector<int>());
                        memset(ind,
            0,sizeof(ind));
                        memset(color,
            0,sizeof(color));
                        
            for(i=1;i<=2*n;i++){
                            len
            =adj[i].size();
                            
            for(j=0;j<len;j++)
                                
            if(id[i]!=id[adj[i][j]]){
                                    dag[id[adj[i][j]]].push_back(id[i]);
                                    ind[id[i]]
            ++;
                                }

                        }

                        
            for(i=1;i<=cnt;i++)
                            
            if(ind[i]==0) q1.push(i);
                        topsort();
                        
            for(i=1;i<=n;i++){
                            
            if(color[id[2*i-1]]=='R') printf("%d\n",2*i-1);
                            
            else printf("%d\n",2*i);
                        }

                    }

                }

                
            return 0;
            }

            posted on 2009-06-07 18:59 極限定律 閱讀(1181) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POI 2001 Peaceful Commission 2-SAT問題 2014-05-05 12:35 zzhhbyt

            您用的求scc的算法應該是叫做kosaraju而不是korasaju吧?  回復  更多評論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久99精品国产自在现线小黄鸭| 国产精品嫩草影院久久| 精品久久久久久亚洲| 久久WWW免费人成一看片| 久久久久久无码国产精品中文字幕| 久久亚洲精品中文字幕三区| 久久se这里只有精品| 国产成人久久激情91| 国产69精品久久久久久人妻精品| 久久综合九色综合久99| 囯产精品久久久久久久久蜜桃| 四虎国产精品成人免费久久| 久久精品二区| 久久精品国产精品亚洲下载| 成人妇女免费播放久久久| 伊人色综合久久天天人守人婷| 精品久久久一二三区| 久久国产成人午夜aⅴ影院| 久久国产色AV免费看| 久久亚洲AV无码西西人体| 久久无码高潮喷水| 久久精品无码av| 国色天香久久久久久久小说| 99久久精品费精品国产| 国产精品久久影院| 亚洲午夜久久久久妓女影院| 国产精品熟女福利久久AV| 久久这里只有精品首页| 狠狠色丁香婷婷综合久久来| 亚洲色欲久久久久综合网| 中文字幕无码av激情不卡久久| 亚洲午夜久久久精品影院| 久久国产精品一国产精品金尊| 亚洲人成网站999久久久综合| 国产精品久久免费| 国产精品美女久久久久久2018| 亚洲色婷婷综合久久| 久久精品国产乱子伦| 亚洲AV无码久久精品色欲| 久久久久se色偷偷亚洲精品av| 亚洲国产日韩欧美久久|