• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ZOJ 1276 Optimal Array Multiplication Sequence 經典DP問題

            Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

             

            The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A) columns(B) columns(A). For example, if A is a 10 x 20 array, and B is a 20 x 15 array, it will take 10 x 15 x 20, or 3000 multiplications to compute the C array.


            To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if X, Y, and Z are arrays, then to compute X Y Z we could either compute (X Y) Z or X (Y Z). Suppose X is a 5 x 10 array, Y is a 10 x 20 array, and Z is a 20 x 35 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

             

            (X Y) Z


            5 x 20 x 10 = 1000 multiplications to determine the product (X Y), a 5 x 20 array.

            Then 5 x 35 x 20 = 3500 multiplications to determine the final result.

            Total multiplications: 4500.

            X (Y Z)

            10 x 35 x 20 = 7000 multiplications to determine the product (Y Z), a 10 x 35 array.

            Then 5 x 35 x 10 = 1750 multiplications to determine the final result.

            Total multiplications: 8750.

            Clearly we'll be able to compute (X Y) Z using fewer individual multiplications.

            Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplcations required.


            Input

            For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.


            Output

            Assume the arrays are named A1, A2, ..., AN. Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.


            Sample Input

            3
            1 5
            5 20
            20 1
            3
            5 10
            10 20
            20 35
            6
            30 35
            35 15
            15 5
            5 10
            10 20
            20 25
            0


            Sample Output

            Case 1: (A1 x (A2 x A3))
            Case 2: ((A1 x A2) x A3)
            Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))


            Source: North Central North America 1996
                

                設計算矩陣A[i:j],1<=i<=j<=n,所需要的最少乘法次數為m[i,j],則原問題的最優值為m[1,n]。
                當i=j時,A[i:j]=Ai,m[i,i]=0,i=1,2,...,n;
                當i<j時,m[i,j]=m[i,k]+m[k+1][j]+pi-1*pk*pj,i<=k<j。
            #include<iostream>
            using namespace std;

            void MatrixChain(int n,int p[],int m[][11],int s[][11]){
                
            int i,j,k,r,t;
                
            for(i=1;i<=n;i++) m[i][i]=0;
                
            for(r=2;r<=n;r++)
                    
            for(i=1;i<=n-r+1;i++){
                        j
            =i+r-1;
                        m[i][j]
            =m[i+1][j]+p[i-1]*p[i]*p[j];
                        s[i][j]
            =i;
                        
            for(k=i+1;k<j;k++){
                            t
            =m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                            
            if(t<m[i][j]){
                                m[i][j]
            =t;
                                s[i][j]
            =k;
                            }

                        }

                    }

            }

            void output(int i,int j,int s[][11]){
                
            if(i==j)
                    printf(
            "A%d",i);
                
            else{
                    printf(
            "(");
                    output(i,s[i][j],s);
                    printf(
            " x ");
                    output(s[i][j]
            +1,j,s);
                    printf(
            ")");
                }

            }

            int main(){
                
            int i,n,ca=1,p[11],m[11][11],s[11][11];
                
            while(scanf("%d",&n),n){
                    
            for(i=1;i<=n;i++) scanf("%d %d",&p[i-1],&p[i]);
                    MatrixChain(n,p,m,s);
                    printf(
            "Case %d: ",ca++);
                    output(
            1,n,s);
                    printf(
            "\n");
                }

                
            return 0;
            }

            posted on 2009-06-19 09:27 極限定律 閱讀(1203) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            精品免费tv久久久久久久| 日本亚洲色大成网站WWW久久| 亚洲精品tv久久久久久久久| 99久久夜色精品国产网站| 99久久婷婷国产综合亚洲| 久久久久亚洲精品无码网址| 亚洲精品乱码久久久久久蜜桃图片| 青草影院天堂男人久久| 伊人久久综合无码成人网| 国产精品免费久久久久电影网| 亚洲欧美伊人久久综合一区二区| 亚洲国产精品久久久久婷婷软件| 无码国内精品久久人妻蜜桃 | 亚洲国产成人久久笫一页| 热re99久久6国产精品免费| 午夜视频久久久久一区| 亚洲天堂久久精品| 精品久久777| 久久久久女人精品毛片| 久久人人爽人人爽人人片av麻烦| 国产日韩欧美久久| 日韩精品国产自在久久现线拍| 久久男人Av资源网站无码软件| 亚洲国产精品嫩草影院久久| 久久精品成人欧美大片| 久久国产精品免费| 精品久久久久中文字| 国产精品丝袜久久久久久不卡| 91精品国产高清久久久久久io| 久久国产精品成人片免费| 久久综合九色综合网站| 久久亚洲精品中文字幕| 国内精品久久久人妻中文字幕| 国产精品久久久久国产A级| 久久精品水蜜桃av综合天堂| 精品久久久久久成人AV| 久久99精品国产一区二区三区| 久久综合丁香激情久久| 国产ww久久久久久久久久| 精品乱码久久久久久夜夜嗨| 色综合久久久久综合99|