• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1157 LITTLE SHOP OF FLOWERS 動態(tài)規(guī)劃

            Description

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
             

            V A S E S

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7 23 -5 -24 16

            2 (begonias)

            5 21 -4 10 23

            3 (carnations)

            -21

            5 -4 -20 20

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            Input

            • The first line contains two numbers: F, V.
            • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.


            • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
            • F <= V <= 100 where V is the number of vases.
            • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Output

            The first line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            Source

                因為題目中規(guī)定若i<j,則第i束花必須出現(xiàn)在第j束花之前,根據(jù)這一條件,可以用花的數(shù)目來進行動態(tài)規(guī)劃。設dp[i,j]為前i束花插在前j個花瓶中的最大美學值,有狀態(tài)轉移方程:dp[i,j]=max(dp[i-1,k-1]+A[i,k]),其中i<=k<=j,A[i,k]為第i束花插在第k個花瓶中的美學值,規(guī)定dp[i,0]=0,1<=i<=F。
            #include<iostream>
            using namespace std;

            const int MAXN = 101;
            const int inf = 10000;
            int A[MAXN][MAXN],dp[MAXN][MAXN];

            int main(){
                
            int i,j,k,f,v,t;
                
            while(scanf("%d %d",&f,&v)!=EOF){
                    
            for(i=1;i<=f;i++){
                        dp[i][
            0]=0;
                        
            for(j=1;j<=v;j++){
                            scanf(
            "%d",&A[i][j]);
                            dp[i][j]
            =-1;
                        }

                    }

                    
            for(i=1;i<=f;i++)
                        
            for(j=1;j<=v;j++)
                            
            for(t=-inf,k=i;k<=j;k++){
                                t
            =max(t,dp[i-1][k-1]+A[i][k]);
                                
            if(dp[i][j]==-1 || dp[i][j]<t)
                                    dp[i][j]
            =t;
                            }

                    printf(
            "%d\n",dp[f][v]);
                }

                
            return 0;
            }

            posted on 2009-06-16 13:57 極限定律 閱讀(1455) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POJ 1157 LITTLE SHOP OF FLOWERS 動態(tài)規(guī)劃 2009-11-17 21:57 Gamor

            dp[i][j] = max(dp[i][j - 1], dp[i - 1][j - 1] + A[i][j])  回復  更多評論   

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            狠狠色丁香婷婷久久综合五月| 日本久久中文字幕| 日韩av无码久久精品免费| 亚洲中文字幕久久精品无码APP| 亚洲AV日韩精品久久久久久| 国产精品美女久久久| 理论片午午伦夜理片久久 | 2021久久精品国产99国产精品| 国产精品久久影院| 午夜精品久久久内射近拍高清 | 人妻精品久久无码区| 狠狠久久综合| 久久国产免费观看精品3| 2020久久精品亚洲热综合一本| 高清免费久久午夜精品| 久久精品国产99久久久古代| 久久精品国产72国产精福利| 久久亚洲欧美国产精品| 色老头网站久久网| 精品国产婷婷久久久| 99久久这里只有精品| 日韩精品久久久久久免费| 亚洲精品乱码久久久久久不卡| 99久久99久久精品国产片| 99久久超碰中文字幕伊人| 久久精品国产亚洲AV影院| 欧美激情精品久久久久久久九九九 | 一本久久a久久精品vr综合| 欧洲国产伦久久久久久久| 99久久国产免费福利| 久久综合九色综合97_久久久| 久久久久久久久久久久中文字幕| 久久综合久久综合亚洲| 亚洲а∨天堂久久精品9966| 少妇久久久久久被弄到高潮| 欧美成a人片免费看久久| 亚洲AⅤ优女AV综合久久久| 久久综合五月丁香久久激情| 天天综合久久一二三区| AV无码久久久久不卡蜜桃| 久久男人Av资源网站无码软件|