• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1157 LITTLE SHOP OF FLOWERS 動態規劃

            Description

            You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

            Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
             

            V A S E S

            1

            2

            3

            4

            5

            Bunches

            1 (azaleas)

            7 23 -5 -24 16

            2 (begonias)

            5 21 -4 10 23

            3 (carnations)

            -21

            5 -4 -20 20

            According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

            To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

            Input

            • The first line contains two numbers: F, V.
            • The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.


            • 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
            • F <= V <= 100 where V is the number of vases.
            • -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

            Output

            The first line will contain the sum of aesthetic values for your arrangement.

            Sample Input

            3 5
            7 23 -5 -24 16
            5 21 -4 10 23
            -21 5 -4 -20 20

            Sample Output

            53

            Source

                因為題目中規定若i<j,則第i束花必須出現在第j束花之前,根據這一條件,可以用花的數目來進行動態規劃。設dp[i,j]為前i束花插在前j個花瓶中的最大美學值,有狀態轉移方程:dp[i,j]=max(dp[i-1,k-1]+A[i,k]),其中i<=k<=j,A[i,k]為第i束花插在第k個花瓶中的美學值,規定dp[i,0]=0,1<=i<=F。
            #include<iostream>
            using namespace std;

            const int MAXN = 101;
            const int inf = 10000;
            int A[MAXN][MAXN],dp[MAXN][MAXN];

            int main(){
                
            int i,j,k,f,v,t;
                
            while(scanf("%d %d",&f,&v)!=EOF){
                    
            for(i=1;i<=f;i++){
                        dp[i][
            0]=0;
                        
            for(j=1;j<=v;j++){
                            scanf(
            "%d",&A[i][j]);
                            dp[i][j]
            =-1;
                        }

                    }

                    
            for(i=1;i<=f;i++)
                        
            for(j=1;j<=v;j++)
                            
            for(t=-inf,k=i;k<=j;k++){
                                t
            =max(t,dp[i-1][k-1]+A[i][k]);
                                
            if(dp[i][j]==-1 || dp[i][j]<t)
                                    dp[i][j]
            =t;
                            }

                    printf(
            "%d\n",dp[f][v]);
                }

                
            return 0;
            }

            posted on 2009-06-16 13:57 極限定律 閱讀(1456) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POJ 1157 LITTLE SHOP OF FLOWERS 動態規劃 2009-11-17 21:57 Gamor

            dp[i][j] = max(dp[i][j - 1], dp[i - 1][j - 1] + A[i][j])  回復  更多評論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品国产亚洲AV无码娇色| jizzjizz国产精品久久| 中文字幕亚洲综合久久菠萝蜜| 久久久久这里只有精品| 爱做久久久久久| 国产亚洲精午夜久久久久久| 久久精品国产99国产精品亚洲| 久久久久亚洲av无码专区| 久久国产精品国语对白| 伊人久久大香线蕉av一区| 国产精品久久久久久福利漫画 | 亚洲人成网站999久久久综合 | 国产精品久久久久无码av| 国产精品亚洲综合专区片高清久久久| 亚洲乱码日产精品a级毛片久久| 18岁日韩内射颜射午夜久久成人| 99精品久久久久久久婷婷| 久久久久久九九99精品| 国产精品中文久久久久久久| 亚洲成色999久久网站| 久久久国产精品亚洲一区| 亚洲七七久久精品中文国产 | 日韩精品久久久久久免费| 国产精品美女久久久免费| 久久国产精品一国产精品金尊| 午夜精品久久久久9999高清| 精品国产婷婷久久久| 久久国产精品成人免费| 97久久超碰国产精品2021| 99久久精品国产一区二区| 狠狠色丁香久久婷婷综合_中| 色综合久久天天综线观看| 久久艹国产| 香港aa三级久久三级老师2021国产三级精品三级在 | 97久久精品人人澡人人爽| 狠狠狠色丁香婷婷综合久久俺| 蜜臀av性久久久久蜜臀aⅴ麻豆 | 久久er国产精品免费观看2| 国产亚洲精品美女久久久| 精品精品国产自在久久高清| 国产一区二区精品久久|