• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1178 Camelot Floyd算法+枚舉

            Description

            Centuries ago, King Arthur and the Knights of the Round Table used to meet every year on New Year's Day to celebrate their fellowship. In remembrance of these events, we consider a board game for one player, on which one king and several knight pieces are placed at random on distinct squares.
            The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board.

            During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely.
            The player抯 goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move.

            Write a program to compute the minimum number of moves the player must perform to produce the gathering.

            Input

            Your program is to read from standard input. The input contains the initial board configuration, encoded as a character string. The string contains a sequence of up to 64 distinct board positions, being the first one the position of the king and the remaining ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate.

            0 <= number of knights <= 63

            Output

            Your program is to write to standard output. The output must contain a single line with an integer indicating the minimum number of moves the player must perform to produce the gathering.

            Sample Input

            D4A3A8H1H8

            Sample Output

            10

            Source


                棋盤上有1個國王和若干個騎士,要把國王和每個騎士移動到同一個格子內,問需要移動的最小步數是多少。如果國王和騎士走到同一個格子里,可以由騎士帶著國王一起移動。
                枚舉棋盤上的64個點作為終點,對于每一個假定的終點,再枚舉這64個點作為國王和某個騎士相遇的點,最后求出需要移動的最小步數。其中根據騎士和國王移動的特點可以預處理出從1個點到另外1個點所需的最小移動次數,也可用搜索。
            #include <iostream>
            using namespace std;

            const int inf = 100000;
            char str[150];
            int k[64],king[64][64],knight[64][64];
            int move1[8][2]={-1,-1,-1,0,-1,1,0,1,1,1,1,0,1,-1,0,-1};
            int move2[8][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2};

            void init(){
                
            int i,j,x,y,tx,ty;
                
            for(i=0;i<64;i++)
                    
            for(j=0;j<64;j++)
                        
            if(i==j) king[i][j]=knight[i][j]=0;
                        
            else king[i][j]=knight[i][j]=inf;
                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move1[j][0],ty=y+move1[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            king[i][
            8*tx+ty]=1;
                    }

                }

                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move2[j][0],ty=y+move2[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            knight[i][
            8*tx+ty]=1;
                    }

                }

            }

            void floyd1(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(king[i][k]+king[k][j]<king[i][j])
                                king[i][j]
            =king[i][k]+king[k][j];
            }

            void floyd2(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(knight[i][k]+knight[k][j]<knight[i][j])
                                knight[i][j]
            =knight[i][k]+knight[k][j];
            }

            int main(){
                
            int i,j,l,cnt,pos,sum,ans,len,t1,t2;
                init();
                floyd1();
                floyd2();
                
            while(scanf("%s",str)!=EOF){
                    len
            =strlen(str);
                    pos
            =(str[0]-'A')+(str[1]-'1')*8;
                    cnt
            =(len-2)/2;
                    
            if(cnt==0){
                        printf(
            "0\n");
                        
            continue;
                    }

                    
            for(i=0,j=2;i<cnt;i++,j+=2)
                        k[i]
            =(str[j]-'A')+(str[j+1]-'1')*8;
                    
            for(ans=inf,i=0;i<64;i++){
                        
            for(sum=l=0;l<cnt;l++)
                            sum
            +=knight[k[l]][i];
                        
            for(j=0;j<64;j++){
                            t1
            =king[pos][j];
                            
            for(t2=inf,l=0;l<cnt;l++)
                                t2
            =min(t2,knight[k[l]][j]+knight[j][i]-knight[k[l]][i]);
                            ans
            =min(ans,sum+t1+t2);
                        }

                    }

                    printf(
            "%d\n",ans);
                }

                
            return 0;
            }

            posted on 2009-07-02 23:57 極限定律 閱讀(2340) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            伊人久久综合无码成人网| 69国产成人综合久久精品| 2021国内精品久久久久久影院| 久久久久人妻一区精品| 97精品依人久久久大香线蕉97 | 香蕉久久夜色精品国产2020| 午夜久久久久久禁播电影| 精品久久人人做人人爽综合 | 久久久久久国产a免费观看不卡| 色偷偷88欧美精品久久久| 狠狠色丁香久久婷婷综合五月 | 久久久老熟女一区二区三区| 国产精品美女久久久久av爽| 亚洲精品乱码久久久久久蜜桃图片 | 久久久久久狠狠丁香| 国产毛片欧美毛片久久久| 精品国产婷婷久久久| 国产精品九九九久久九九| 久久青青草原精品国产| 狠狠色噜噜色狠狠狠综合久久| 国产成人香蕉久久久久| 91超碰碰碰碰久久久久久综合| 色综合久久久久久久久五月| 欧美亚洲国产精品久久久久| 久久久综合香蕉尹人综合网| 亚洲天堂久久精品| 久久国产精品一区二区| 91久久精品91久久性色| avtt天堂网久久精品| 久久av无码专区亚洲av桃花岛| 亚洲国产日韩综合久久精品| 日韩亚洲国产综合久久久| 色综合久久天天综线观看| 久久99精品久久久久久秒播| 久久成人永久免费播放| 亚洲国产成人乱码精品女人久久久不卡| 99久久成人国产精品免费| 久久香蕉国产线看观看99| 国产亚洲欧美成人久久片| 国产精品99久久精品爆乳| 久久国产成人|