• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1178 Camelot Floyd算法+枚舉

            Description

            Centuries ago, King Arthur and the Knights of the Round Table used to meet every year on New Year's Day to celebrate their fellowship. In remembrance of these events, we consider a board game for one player, on which one king and several knight pieces are placed at random on distinct squares.
            The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board.

            During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely.
            The player抯 goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move.

            Write a program to compute the minimum number of moves the player must perform to produce the gathering.

            Input

            Your program is to read from standard input. The input contains the initial board configuration, encoded as a character string. The string contains a sequence of up to 64 distinct board positions, being the first one the position of the king and the remaining ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate.

            0 <= number of knights <= 63

            Output

            Your program is to write to standard output. The output must contain a single line with an integer indicating the minimum number of moves the player must perform to produce the gathering.

            Sample Input

            D4A3A8H1H8

            Sample Output

            10

            Source


                棋盤上有1個國王和若干個騎士,要把國王和每個騎士移動到同一個格子內,問需要移動的最小步數是多少。如果國王和騎士走到同一個格子里,可以由騎士帶著國王一起移動。
                枚舉棋盤上的64個點作為終點,對于每一個假定的終點,再枚舉這64個點作為國王和某個騎士相遇的點,最后求出需要移動的最小步數。其中根據騎士和國王移動的特點可以預處理出從1個點到另外1個點所需的最小移動次數,也可用搜索。
            #include <iostream>
            using namespace std;

            const int inf = 100000;
            char str[150];
            int k[64],king[64][64],knight[64][64];
            int move1[8][2]={-1,-1,-1,0,-1,1,0,1,1,1,1,0,1,-1,0,-1};
            int move2[8][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2};

            void init(){
                
            int i,j,x,y,tx,ty;
                
            for(i=0;i<64;i++)
                    
            for(j=0;j<64;j++)
                        
            if(i==j) king[i][j]=knight[i][j]=0;
                        
            else king[i][j]=knight[i][j]=inf;
                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move1[j][0],ty=y+move1[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            king[i][
            8*tx+ty]=1;
                    }

                }

                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move2[j][0],ty=y+move2[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            knight[i][
            8*tx+ty]=1;
                    }

                }

            }

            void floyd1(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(king[i][k]+king[k][j]<king[i][j])
                                king[i][j]
            =king[i][k]+king[k][j];
            }

            void floyd2(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(knight[i][k]+knight[k][j]<knight[i][j])
                                knight[i][j]
            =knight[i][k]+knight[k][j];
            }

            int main(){
                
            int i,j,l,cnt,pos,sum,ans,len,t1,t2;
                init();
                floyd1();
                floyd2();
                
            while(scanf("%s",str)!=EOF){
                    len
            =strlen(str);
                    pos
            =(str[0]-'A')+(str[1]-'1')*8;
                    cnt
            =(len-2)/2;
                    
            if(cnt==0){
                        printf(
            "0\n");
                        
            continue;
                    }

                    
            for(i=0,j=2;i<cnt;i++,j+=2)
                        k[i]
            =(str[j]-'A')+(str[j+1]-'1')*8;
                    
            for(ans=inf,i=0;i<64;i++){
                        
            for(sum=l=0;l<cnt;l++)
                            sum
            +=knight[k[l]][i];
                        
            for(j=0;j<64;j++){
                            t1
            =king[pos][j];
                            
            for(t2=inf,l=0;l<cnt;l++)
                                t2
            =min(t2,knight[k[l]][j]+knight[j][i]-knight[k[l]][i]);
                            ans
            =min(ans,sum+t1+t2);
                        }

                    }

                    printf(
            "%d\n",ans);
                }

                
            return 0;
            }

            posted on 2009-07-02 23:57 極限定律 閱讀(2338) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久精品卫校国产小美女| 青草久久久国产线免观| 久久亚洲国产成人精品性色| 精品永久久福利一区二区 | 国产亚州精品女人久久久久久| 久久香蕉一级毛片| 怡红院日本一道日本久久| 久久人搡人人玩人妻精品首页| 亚洲AV无码1区2区久久| 办公室久久精品| 久久久久亚洲av无码专区导航| 天天久久狠狠色综合| 国产精品99久久久久久宅男小说| 九九99精品久久久久久| 午夜精品久久久久久影视777| 久久精品水蜜桃av综合天堂| 合区精品久久久中文字幕一区 | 国产亚洲色婷婷久久99精品| 久久AAAA片一区二区| 精品久久久无码人妻中文字幕豆芽| 欧美粉嫩小泬久久久久久久 | 国产精品欧美亚洲韩国日本久久| 综合久久一区二区三区 | 久久99精品久久久久久动态图| 日本亚洲色大成网站WWW久久 | 国产精品久久国产精麻豆99网站| 亚洲精品无码久久毛片| 伊人久久精品线影院| 97久久国产亚洲精品超碰热| 久久人妻无码中文字幕| 亚洲美日韩Av中文字幕无码久久久妻妇| 国产精品久久免费| 久久久久免费看成人影片| 伊人久久精品无码av一区| 亚洲精品成人网久久久久久| 久久久WWW成人| 色综合久久中文字幕综合网| 国产精品成人久久久久三级午夜电影 | 99久久婷婷国产一区二区| 久久99精品久久久久久| 久久国产色AV免费看|