• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POI 2001 Peaceful Commission 2-SAT問(wèn)題

            The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

            The Commission has to fulfill the following conditions:

            • Each party has exactly one representative in the Commission,
            • If two deputies do not like each other, they cannot both belong to the Commission.

            Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

            Task

            Write a program, which:

            • reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,
            • decides whether it is possible to establish the Commission, and if so, proposes the list of members,
            • writes the result in the text file SPO.OUT.

            Input

            In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.

            There are multiple test cases. Process to end of file.

            Output

            The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write any of them.

            Sample Input

            3 2
            1 3
            2 4

            Sample Output

            1
            4
            5
            
               最近看了2篇關(guān)于2-SAT問(wèn)題的IOI論文,對(duì)2-SAT問(wèn)題的O(m)時(shí)間復(fù)雜度的解法也有了一定的了解,找了道POI 2001的題來(lái)做,在WA了無(wú)數(shù)次之后終于過(guò)了,跑了1.44s,效率還可以。
            2篇論文分別是<<由對(duì)稱性解2-SAT問(wèn)題>>和<<2-SAT解法淺析>>。
            //2-SAT問(wèn)題
            //求出所有強(qiáng)連通分量,如果有矛盾點(diǎn)同處于一個(gè)連通分量則無(wú)解
            //縮點(diǎn),將原圖反向建立DAG圖
            //按拓?fù)渑判蛑?,找一個(gè)未著色點(diǎn)x,染成紅色
            //將與x矛盾的頂點(diǎn)及其子孫染為藍(lán)色
            //直到所有頂點(diǎn)均被染色,紅色即為2-SAT的一組解
            #include <iostream>
            #include 
            <vector>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 16010;//2*8000
            char color[MAXN];//染色
            bool visit[MAXN];
            queue
            <int> q1,q2;
            vector
            < vector<int> > adj; //原圖
            vector< vector<int> > radj;//逆向圖
            vector< vector<int> > dag; //縮點(diǎn)后的逆向DAG圖
            int n,m,cnt,id[MAXN],order[MAXN],ind[MAXN];//強(qiáng)連通分量,訪問(wèn)順序,入度

            void dfs(int u){
                visit[u]
            =true;
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[adj[u][i]])
                        dfs(adj[u][i]);
                order[cnt
            ++]=u;
            }

            void rdfs(int u){
                visit[u]
            =true;
                id[u]
            =cnt;
                
            int i,len=radj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[radj[u][i]])
                        rdfs(radj[u][i]);
            }

            void korasaju(){
                
            int i;
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=1;i<=2*n;i++)
                    
            if(!visit[i]) dfs(i);
                memset(id,
            0,sizeof(id));
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=2*n-1;i>=0;i--)
                    
            if(!visit[order[i]])
                        cnt
            ++,rdfs(order[i]);
            }

            bool solvable(){
                
            for(int i=1;i<=n;i++)
                    
            if(id[2*i-1]==id[2*i])
                        
            return false;
                
            return true;
            }

            void topsort(){
                
            int i,j,len,now,p,pid;    
                
            while(!q1.empty()){
                    now
            =q1.front();
                    q1.pop();
                    
            if(color[now]!=0continue ;
                    color[now]
            ='R';
                    ind[now]
            =-1;
                    
            for(i=1;i<=2*n;i++){
                        
            if(id[i]==now){
                            p
            =(i%2)?i+1:i-1;
                            pid
            =id[p];                        
                            q2.push(pid);
                            
            while(!q2.empty()){
                                pid
            =q2.front();
                                q2.pop();
                                
            if(color[pid]=='B'continue ;            
                                color[pid]
            ='B';
                                
            int len=dag[pid].size();
                                
            for(j=0;j<len;j++)
                                    q2.push(dag[pid][j]);
                            }

                        }

                    }

                    len
            =dag[now].size();
                    
            for(i=0;i<len;i++){
                        ind[dag[now][i]]
            --;
                        
            if(ind[dag[now][i]]==0) q1.push(dag[now][i]);        
                    }

                }

            }

            int main(){
                
            int i,j,x,y,xx,yy,len;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    adj.assign(
            2*n+1,vector<int>());
                    radj.assign(
            2*n+1,vector<int>());
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d",&x,&y);
                        xx
            =(x%2)?x+1:x-1;
                        yy
            =(y%2)?y+1:y-1;
                        adj[x].push_back(yy);
                        adj[y].push_back(xx);
                        radj[yy].push_back(x);
                        radj[xx].push_back(y);
                    }

                    korasaju();
                    
            if(!solvable()) puts("NIE");
                    
            else{
                        dag.assign(cnt
            +1,vector<int>());
                        memset(ind,
            0,sizeof(ind));
                        memset(color,
            0,sizeof(color));
                        
            for(i=1;i<=2*n;i++){
                            len
            =adj[i].size();
                            
            for(j=0;j<len;j++)
                                
            if(id[i]!=id[adj[i][j]]){
                                    dag[id[adj[i][j]]].push_back(id[i]);
                                    ind[id[i]]
            ++;
                                }

                        }

                        
            for(i=1;i<=cnt;i++)
                            
            if(ind[i]==0) q1.push(i);
                        topsort();
                        
            for(i=1;i<=n;i++){
                            
            if(color[id[2*i-1]]=='R') printf("%d\n",2*i-1);
                            
            else printf("%d\n",2*i);
                        }

                    }

                }

                
            return 0;
            }

            posted on 2009-06-07 18:59 極限定律 閱讀(1181) 評(píng)論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評(píng)論

            # re: POI 2001 Peaceful Commission 2-SAT問(wèn)題 2014-05-05 12:35 zzhhbyt

            您用的求scc的算法應(yīng)該是叫做kosaraju而不是korasaju吧?  回復(fù)  更多評(píng)論   

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            7国产欧美日韩综合天堂中文久久久久 | 久久九九久精品国产免费直播| 欧美色综合久久久久久| 久久99热这里只频精品6| 91久久婷婷国产综合精品青草| 国产精品激情综合久久| 久久综合亚洲色HEZYO社区| 99久久成人国产精品免费| 欧美日韩精品久久久久| 久久亚洲国产成人精品性色| 久久综合一区二区无码| 99久久人妻无码精品系列蜜桃| 久久久久亚洲AV成人网人人网站 | 久久无码中文字幕东京热| 99久久人妻无码精品系列蜜桃| 久久夜色精品国产www| 久久被窝电影亚洲爽爽爽| 久久久久亚洲AV无码观看| segui久久国产精品| 国内精品久久久久久99蜜桃| 伊人热热久久原色播放www| 久久精品国产精品亜洲毛片| 国产精品久久久久久搜索| 色欲av伊人久久大香线蕉影院| 午夜精品久久久内射近拍高清| 99热热久久这里只有精品68| 日韩欧美亚洲综合久久影院d3| 国产亚洲精久久久久久无码77777| 日韩AV毛片精品久久久| 久久综合日本熟妇| 亚洲AV伊人久久青青草原| 天天影视色香欲综合久久| 久久精品?ⅴ无码中文字幕| 99精品伊人久久久大香线蕉| 亚洲欧美精品伊人久久| 国产精品美女久久久免费| 国产成人久久激情91| 久久青青草原综合伊人| 精品水蜜桃久久久久久久| 欧美国产精品久久高清| 久久久久久免费视频|