• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POI 2001 Peaceful Commission 2-SAT問題

            The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

            The Commission has to fulfill the following conditions:

            • Each party has exactly one representative in the Commission,
            • If two deputies do not like each other, they cannot both belong to the Commission.

            Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

            Task

            Write a program, which:

            • reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,
            • decides whether it is possible to establish the Commission, and if so, proposes the list of members,
            • writes the result in the text file SPO.OUT.

            Input

            In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.

            There are multiple test cases. Process to end of file.

            Output

            The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write any of them.

            Sample Input

            3 2
            1 3
            2 4

            Sample Output

            1
            4
            5
            
               最近看了2篇關于2-SAT問題的IOI論文,對2-SAT問題的O(m)時間復雜度的解法也有了一定的了解,找了道POI 2001的題來做,在WA了無數(shù)次之后終于過了,跑了1.44s,效率還可以。
            2篇論文分別是<<由對稱性解2-SAT問題>>和<<2-SAT解法淺析>>。
            //2-SAT問題
            //求出所有強連通分量,如果有矛盾點同處于一個連通分量則無解
            //縮點,將原圖反向建立DAG圖
            //按拓撲排序著色,找一個未著色點x,染成紅色
            //將與x矛盾的頂點及其子孫染為藍色
            //直到所有頂點均被染色,紅色即為2-SAT的一組解
            #include <iostream>
            #include 
            <vector>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 16010;//2*8000
            char color[MAXN];//染色
            bool visit[MAXN];
            queue
            <int> q1,q2;
            vector
            < vector<int> > adj; //原圖
            vector< vector<int> > radj;//逆向圖
            vector< vector<int> > dag; //縮點后的逆向DAG圖
            int n,m,cnt,id[MAXN],order[MAXN],ind[MAXN];//強連通分量,訪問順序,入度

            void dfs(int u){
                visit[u]
            =true;
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[adj[u][i]])
                        dfs(adj[u][i]);
                order[cnt
            ++]=u;
            }

            void rdfs(int u){
                visit[u]
            =true;
                id[u]
            =cnt;
                
            int i,len=radj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[radj[u][i]])
                        rdfs(radj[u][i]);
            }

            void korasaju(){
                
            int i;
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=1;i<=2*n;i++)
                    
            if(!visit[i]) dfs(i);
                memset(id,
            0,sizeof(id));
                memset(visit,
            false,sizeof(visit));
                
            for(cnt=0,i=2*n-1;i>=0;i--)
                    
            if(!visit[order[i]])
                        cnt
            ++,rdfs(order[i]);
            }

            bool solvable(){
                
            for(int i=1;i<=n;i++)
                    
            if(id[2*i-1]==id[2*i])
                        
            return false;
                
            return true;
            }

            void topsort(){
                
            int i,j,len,now,p,pid;    
                
            while(!q1.empty()){
                    now
            =q1.front();
                    q1.pop();
                    
            if(color[now]!=0continue ;
                    color[now]
            ='R';
                    ind[now]
            =-1;
                    
            for(i=1;i<=2*n;i++){
                        
            if(id[i]==now){
                            p
            =(i%2)?i+1:i-1;
                            pid
            =id[p];                        
                            q2.push(pid);
                            
            while(!q2.empty()){
                                pid
            =q2.front();
                                q2.pop();
                                
            if(color[pid]=='B'continue ;            
                                color[pid]
            ='B';
                                
            int len=dag[pid].size();
                                
            for(j=0;j<len;j++)
                                    q2.push(dag[pid][j]);
                            }

                        }

                    }

                    len
            =dag[now].size();
                    
            for(i=0;i<len;i++){
                        ind[dag[now][i]]
            --;
                        
            if(ind[dag[now][i]]==0) q1.push(dag[now][i]);        
                    }

                }

            }

            int main(){
                
            int i,j,x,y,xx,yy,len;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    adj.assign(
            2*n+1,vector<int>());
                    radj.assign(
            2*n+1,vector<int>());
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d",&x,&y);
                        xx
            =(x%2)?x+1:x-1;
                        yy
            =(y%2)?y+1:y-1;
                        adj[x].push_back(yy);
                        adj[y].push_back(xx);
                        radj[yy].push_back(x);
                        radj[xx].push_back(y);
                    }

                    korasaju();
                    
            if(!solvable()) puts("NIE");
                    
            else{
                        dag.assign(cnt
            +1,vector<int>());
                        memset(ind,
            0,sizeof(ind));
                        memset(color,
            0,sizeof(color));
                        
            for(i=1;i<=2*n;i++){
                            len
            =adj[i].size();
                            
            for(j=0;j<len;j++)
                                
            if(id[i]!=id[adj[i][j]]){
                                    dag[id[adj[i][j]]].push_back(id[i]);
                                    ind[id[i]]
            ++;
                                }

                        }

                        
            for(i=1;i<=cnt;i++)
                            
            if(ind[i]==0) q1.push(i);
                        topsort();
                        
            for(i=1;i<=n;i++){
                            
            if(color[id[2*i-1]]=='R') printf("%d\n",2*i-1);
                            
            else printf("%d\n",2*i);
                        }

                    }

                }

                
            return 0;
            }

            posted on 2009-06-07 18:59 極限定律 閱讀(1174) 評論(1)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評論

            # re: POI 2001 Peaceful Commission 2-SAT問題 2014-05-05 12:35 zzhhbyt

            您用的求scc的算法應該是叫做kosaraju而不是korasaju吧?  回復  更多評論   

            <2016年1月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久国产色AV免费看| 亚洲国产精品无码久久久不卡 | 久久精品国产亚洲AV不卡| 国产福利电影一区二区三区久久老子无码午夜伦不 | 久久久久亚洲精品无码网址| 99精品伊人久久久大香线蕉| 久久精品国产精品青草| 久久se精品一区二区| 久久美女网站免费| 色综合久久久久| 久久久久九国产精品| 久久精品无码一区二区三区日韩 | 97精品伊人久久久大香线蕉| 久久精品中文字幕一区| 久久久国产精品亚洲一区| 青青青国产成人久久111网站| 免费观看成人久久网免费观看| 精品久久久久一区二区三区 | 色青青草原桃花久久综合| 亚洲AV日韩精品久久久久久久| 97久久久精品综合88久久| 久久99精品久久久久久齐齐| 日韩十八禁一区二区久久| 国内精品久久久久久久久电影网| 伊人久久大香线蕉综合Av| 欧美一区二区精品久久| 亚洲七七久久精品中文国产 | 亚洲精品无码久久久| 亚洲国产一成人久久精品| 人人狠狠综合久久亚洲88| 一级A毛片免费观看久久精品| 奇米综合四色77777久久| 久久国产视频99电影| 久久人妻少妇嫩草AV无码专区| 精品久久综合1区2区3区激情| 老男人久久青草av高清| 国产精品久久国产精麻豆99网站| 免费一级做a爰片久久毛片潮| 久久综合狠狠综合久久综合88| 久久一区二区三区99| 国内精品久久国产大陆|