• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 2195 Going Home 二分圖完美匹配

            Description

            On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

            Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.

            You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

            Input

            There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

            Output

            For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

            Sample Input

            2 2
            .m
            H.
            5 5
            HH..m
            .....
            .....
            .....
            mm..H
            7 8
            ...H....
            ...H....
            ...H....
            mmmHmmmm
            ...H....
            ...H....
            ...H....
            0 0
            

            Sample Output

            2
            10
            28
            

            Source


                題目大意:有m個人要進h間房子,從當前位置(x1,y1)進入房子(x2,y2)的時間為|x1-x2|+|y1-y2|,問這m個人都進入房間所需的最小時間是多少。問題可以轉化為帶權二分圖的最小權匹配,以sample 2為例先建立二分圖:
             
            (m1,h1)=4,(m1,h2)=3,(m1,h3)=4,(m2,h1)=4,(m2,h2)=5,(m2,h3)=4,(m3,h1)=5,(m3,h2)=4,(m3,h3)=3.
            然后用KM算法求解,代碼中的注釋部分為最大權匹配。
            #include <iostream>

            const int MAX = 101;
            const int MAXN = 10001;
            const int inf = 0x7FFFFFFF;
            struct point{
                
            int x,y;
            }
            man[MAXN],home[MAXN];
            bool vx[MAX],vy[MAX];
            int m,h,map[MAX][MAXN],lx[MAX],ly[MAX],match[MAX];

            bool dfs(int u){
                
            int i;
                
            for(vx[u]=true,i=0;i<h;i++)
                    
            if(!vy[i] && lx[u]+ly[i]==map[u][i]){
                        vy[i]
            =true;
                        
            if(match[i]==-1 || dfs(match[i])){
                            match[i]
            =u;
                            
            return true;
                        }

                    }

                
            return false;
            }

            int kuhn_munkras(){
                
            int i,j,k,min,ans;
                
            for(i=0;i<m;i++)
                    
            for(lx[i]=inf,j=0;j<h;j++)
                        
            if(map[i][j]<lx[i]) lx[i]=map[i][j];
              
            //for(i=0;i<m;i++)
              
            //    for(lx[i]=-inf,j=0;j<h;j++)
              
            //        if(map[i][j]>lx[i]) lx[i]=map[i][j]; 最大權匹配
                for(i=0;i<h;i++) ly[i]=0;
                memset(match,
            -1,sizeof(match));
                
            for(i=0;i<m;i++){
                    
            while(true){
                        memset(vx,
            false,sizeof(vx));
                        memset(vy,
            false,sizeof(vy));
                        min
            =inf;
                        
            if(dfs(i)) break;
                        
            for(j=0;j<m;j++){
                            
            if(vx[j]){
                                
            for(k=0;k<h;k++)
                                    
            if(!vy[k] && map[j][k]-lx[j]-ly[k]<min)
                                        min
            =map[j][k]-lx[j]-ly[k];
                                  
            //if(!vy[k] && lx[j]+ly[k]-map[j][k]<min)
                                  
            //    min=map[j][k]-lx[j]-ly[k]; 最大權匹配
                            }

                        }

                        
            for(j=0;j<m;j++if(vx[j]) lx[j]+=min;
                        
            for(j=0;j<h;j++if(vy[j]) ly[j]-=min;
                    }

                }

                
            for(ans=i=0;i<h;i++) ans+=map[match[i]][i];
                
            return ans;
            }

            int main(){
                
            char ch;
                
            int i,j,row,colum;
                
            while(scanf("%d %d",&row,&colum),row||colum){
                    
            for(getchar(),m=h=i=0;i<row;i++){
                        
            for(j=0;j<colum;j++){
                            ch
            =getchar();
                            
            if(ch=='m')
                                man[m].x
            =i,man[m].y=j,m++;
                            
            else if(ch=='H')
                                home[h].x
            =i,home[h].y=j,h++;
                        }

                        getchar();
                    }

                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<m;i++)
                        
            for(j=0;j<h;j++)
                            map[i][j]
            =abs(man[i].x-home[j].x)+abs(man[i].y-home[j].y);
                    printf(
            "%d\n",kuhn_munkras());
                }

                
            return 0;
            }

            posted on 2009-06-03 12:45 極限定律 閱讀(814) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            亚洲国产精品无码成人片久久| 亚洲狠狠综合久久| 久久露脸国产精品| 国产色综合久久无码有码| 久久精品国产福利国产秒| 欧美精品乱码99久久蜜桃| 99久久综合狠狠综合久久| 麻豆一区二区99久久久久| 亚洲精品乱码久久久久久蜜桃 | 亚洲欧美日韩中文久久| 国产精品国色综合久久| 国产成年无码久久久免费| 精品国产福利久久久| 午夜精品久久久久久久无码| 91精品日韩人妻无码久久不卡 | 伊色综合久久之综合久久| 2020最新久久久视精品爱| 久久精品国产亚洲精品| 青青青青久久精品国产 | 精品久久久久久国产| 色婷婷噜噜久久国产精品12p| 国产成人精品综合久久久久| 国产精品成人无码久久久久久 | 国内精品久久久久久99蜜桃| 久久国产综合精品五月天| 久久A级毛片免费观看| 国产情侣久久久久aⅴ免费| 久久精品亚洲乱码伦伦中文| 久久本道伊人久久| 久久久久久亚洲AV无码专区| 久久亚洲AV无码精品色午夜| 久久一区二区三区免费| 国产精品VIDEOSSEX久久发布| 久久99国产精品久久99果冻传媒| 欧美熟妇另类久久久久久不卡| 亚洲精品国产第一综合99久久| 久久一本综合| 久久久久久久久久久久久久| 久久毛片一区二区| 亚洲国产精品嫩草影院久久| 久久亚洲2019中文字幕|