• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 3164 Command Network 最小樹形圖

            Description

            After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

            With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

            Input

            The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

            Output

            For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

            Sample Input

            4 6
            0 6
            4 6
            0 0
            7 20
            1 2
            1 3
            2 3
            3 4
            3 1
            3 2
            4 3
            0 0
            1 0
            0 1
            1 2
            1 3
            4 1
            2 3

            Sample Output

            31.19
            poor snoopy

            Source


             

            最小樹形圖算法(Zhu-Liu Algorithm)

            1.       設最小樹形圖的總權值為cost,置cost0

            2.       除源點外,為其他所有節點Vi找一條權值最小的入邊,加入集合TT就是最短邊的集合。加邊的方法:遍歷所有點到Vi的邊中權值最小的加入集合T,記pre[Vi]為該邊的起點,mincost[Vi]為該邊的權值。

            3.       檢查集合T中的邊是否存在有向環,有則轉到步驟4,無則轉到步驟5。這里需要利用pre數組,枚舉檢查過的點作為搜索的起點,類似dfs的操作判斷有向環。

            4.       將有向環縮成一個點。設環中有點{Vk1,Vk2,…,Vki}i個點,用Vk代替縮成的點。在壓縮后的圖中,更新所有不在環中的點VVk的距離:

            map[V][Vk] = min {map[V][Vkj]-mincost[Vki]} 1<=j<=i

            map[Vk][V] = min {map[Vkj][V]}           1<=j<=I

            5.       cost加上T中有向邊的權值總和就是最小樹形圖的權值總和。

            #include <iostream>
            #include 
            <cmath>

            #define min(a,b) (a<b ? a:b)

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,pre[MAXN];
            double x[MAXN],y[MAXN];
            bool circle[MAXN],visit[MAXN];
            double ans,map[MAXN][MAXN];

            inline 
            double distance(double x1,double y1,double x2,double y2){
                
            return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
            }

            void dfs(int u){
                visit[u]
            =true;
                
            for(int i=2;i<=n;i++)
                    
            if(!visit[i] && map[u][i]!=INF)
                        dfs(i);
            }

            bool connected(){
                memset(visit,
            false,sizeof(visit));
                
            int i,cnt=0;
                
            for(i=1;i<=n;i++)
                    
            if(!visit[i])
                        dfs(i),cnt
            ++;
                
            return cnt==1 ? true : false;
            }

            void min_arborescence(){
                
            int i,j,k;
                memset(circle,
            false,sizeof(circle));
                
            while(true){
                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        pre[i]
            =i;
                        map[i][i]
            =INF;
                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]<map[pre[i]][i])
                                pre[i]
            =j;
                        }

                    }

                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        j
            =i;
                        memset(visit,
            false,sizeof(visit));
                        
            while(!visit[j] && j!=1){
                            visit[j]
            =true;
                            j
            =pre[j];
                        }

                        
            if(j==1continue;
                        i
            =j;
                        ans
            +=map[pre[i]][i];
                        
            for(j=pre[i];j!=i;j=pre[j]){
                            ans
            +=map[pre[j]][j];
                            circle[j]
            =true;
                        }

                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]!=INF)
                                map[j][i]
            -=map[pre[i]][i];
                        }

                        
            for(j=pre[i];j!=i;j=pre[j])
                            
            for(k=1;k<=n;k++){
                                
            if(circle[k]) continue;
                                map[i][k]
            =min(map[i][k],map[j][k]);
                                
            if(map[k][j]!=INF)
                                    map[k][i]
            =min(map[k][i],map[k][j]-map[pre[j]][j]);
                            }

                        
            break;
                    }

                    
            if(i>n){
                        
            for(j=2;j<=n;j++){
                            
            if(circle[j]) continue;
                            ans
            +=map[pre[j]][j];
                        }

                        
            break;
                    }

                }

            }

            int main(){
                
            int i,j,u,v;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    
            for(ans=i=0;i<=n;i++for(j=0;j<=n;j++) map[i][j]=INF;
                    
            for(i=1;i<=n;i++) scanf("%lf %lf",&x[i],&y[i]);
                    
            while(m--){
                        scanf(
            "%d %d",&u,&v);
                        map[u][v]
            =distance(x[u],y[u],x[v],y[v]);
                    }

                    
            if(!connected()) puts("poor snoopy");
                    
            else{
                        min_arborescence();
                        printf(
            "%.2lf\n",ans);
                    }

                }

                
            return 0;
            }

            posted on 2009-05-26 16:03 極限定律 閱讀(676) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2025年6月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            293012345

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            无码人妻久久一区二区三区免费丨 | 久久精品国产精品亜洲毛片 | 久久久久人妻一区精品| 久久久久九九精品影院| 久久国产亚洲精品| 国产精品99久久久久久人| 精品国产青草久久久久福利 | 久久婷婷色综合一区二区| 一级a性色生活片久久无| 久久精品夜夜夜夜夜久久| 久久久国产精品福利免费| 三级三级久久三级久久| 777久久精品一区二区三区无码| 亚洲精品无码久久不卡| 精品久久久久久久| 亚洲欧美国产日韩综合久久| 久久精品一本到99热免费| 亚洲欧洲精品成人久久曰影片 | 久久中文字幕视频、最近更新| 99久久这里只精品国产免费| 国产成人久久久精品二区三区| 亚洲精品美女久久久久99小说 | 蜜桃麻豆www久久| 亚洲欧美久久久久9999| 精品久久久久久无码中文野结衣| 嫩草伊人久久精品少妇AV| 无码任你躁久久久久久| 久久亚洲国产成人影院网站| 久久精品国产久精国产| 久久久亚洲欧洲日产国码二区| 亚洲人成电影网站久久| 国产69精品久久久久APP下载| 久久综合亚洲色HEZYO国产| 国产精品热久久无码av| 国产成人综合久久综合| 精品久久久久久成人AV| 久久人爽人人爽人人片AV| 亚洲va久久久噜噜噜久久狠狠 | 国产精品午夜久久| 国产成人精品久久综合| 久久国产精品视频|