• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 3164 Command Network 最小樹形圖

            Description

            After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

            With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

            Input

            The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

            Output

            For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

            Sample Input

            4 6
            0 6
            4 6
            0 0
            7 20
            1 2
            1 3
            2 3
            3 4
            3 1
            3 2
            4 3
            0 0
            1 0
            0 1
            1 2
            1 3
            4 1
            2 3

            Sample Output

            31.19
            poor snoopy

            Source


             

            最小樹形圖算法(Zhu-Liu Algorithm)

            1.       設(shè)最小樹形圖的總權(quán)值為cost,置cost0

            2.       除源點(diǎn)外,為其他所有節(jié)點(diǎn)Vi找一條權(quán)值最小的入邊,加入集合TT就是最短邊的集合。加邊的方法:遍歷所有點(diǎn)到Vi的邊中權(quán)值最小的加入集合T,記pre[Vi]為該邊的起點(diǎn),mincost[Vi]為該邊的權(quán)值。

            3.       檢查集合T中的邊是否存在有向環(huán),有則轉(zhuǎn)到步驟4,無則轉(zhuǎn)到步驟5。這里需要利用pre數(shù)組,枚舉檢查過的點(diǎn)作為搜索的起點(diǎn),類似dfs的操作判斷有向環(huán)。

            4.       將有向環(huán)縮成一個(gè)點(diǎn)。設(shè)環(huán)中有點(diǎn){Vk1,Vk2,…,Vki}i個(gè)點(diǎn),用Vk代替縮成的點(diǎn)。在壓縮后的圖中,更新所有不在環(huán)中的點(diǎn)VVk的距離:

            map[V][Vk] = min {map[V][Vkj]-mincost[Vki]} 1<=j<=i

            map[Vk][V] = min {map[Vkj][V]}           1<=j<=I

            5.       cost加上T中有向邊的權(quán)值總和就是最小樹形圖的權(quán)值總和。

            #include <iostream>
            #include 
            <cmath>

            #define min(a,b) (a<b ? a:b)

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,pre[MAXN];
            double x[MAXN],y[MAXN];
            bool circle[MAXN],visit[MAXN];
            double ans,map[MAXN][MAXN];

            inline 
            double distance(double x1,double y1,double x2,double y2){
                
            return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
            }

            void dfs(int u){
                visit[u]
            =true;
                
            for(int i=2;i<=n;i++)
                    
            if(!visit[i] && map[u][i]!=INF)
                        dfs(i);
            }

            bool connected(){
                memset(visit,
            false,sizeof(visit));
                
            int i,cnt=0;
                
            for(i=1;i<=n;i++)
                    
            if(!visit[i])
                        dfs(i),cnt
            ++;
                
            return cnt==1 ? true : false;
            }

            void min_arborescence(){
                
            int i,j,k;
                memset(circle,
            false,sizeof(circle));
                
            while(true){
                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        pre[i]
            =i;
                        map[i][i]
            =INF;
                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]<map[pre[i]][i])
                                pre[i]
            =j;
                        }

                    }

                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        j
            =i;
                        memset(visit,
            false,sizeof(visit));
                        
            while(!visit[j] && j!=1){
                            visit[j]
            =true;
                            j
            =pre[j];
                        }

                        
            if(j==1continue;
                        i
            =j;
                        ans
            +=map[pre[i]][i];
                        
            for(j=pre[i];j!=i;j=pre[j]){
                            ans
            +=map[pre[j]][j];
                            circle[j]
            =true;
                        }

                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]!=INF)
                                map[j][i]
            -=map[pre[i]][i];
                        }

                        
            for(j=pre[i];j!=i;j=pre[j])
                            
            for(k=1;k<=n;k++){
                                
            if(circle[k]) continue;
                                map[i][k]
            =min(map[i][k],map[j][k]);
                                
            if(map[k][j]!=INF)
                                    map[k][i]
            =min(map[k][i],map[k][j]-map[pre[j]][j]);
                            }

                        
            break;
                    }

                    
            if(i>n){
                        
            for(j=2;j<=n;j++){
                            
            if(circle[j]) continue;
                            ans
            +=map[pre[j]][j];
                        }

                        
            break;
                    }

                }

            }

            int main(){
                
            int i,j,u,v;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    
            for(ans=i=0;i<=n;i++for(j=0;j<=n;j++) map[i][j]=INF;
                    
            for(i=1;i<=n;i++) scanf("%lf %lf",&x[i],&y[i]);
                    
            while(m--){
                        scanf(
            "%d %d",&u,&v);
                        map[u][v]
            =distance(x[u],y[u],x[v],y[v]);
                    }

                    
            if(!connected()) puts("poor snoopy");
                    
            else{
                        min_arborescence();
                        printf(
            "%.2lf\n",ans);
                    }

                }

                
            return 0;
            }

            posted on 2009-05-26 16:03 極限定律 閱讀(676) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            国产精品久久久香蕉| 久久精品国产亚洲AV嫖农村妇女| 久久精品人人做人人爽电影蜜月 | 国产农村妇女毛片精品久久| www性久久久com| 久久久久久国产精品免费免费| 日本久久中文字幕| 久久久久无码精品国产| 91精品婷婷国产综合久久| 欧美成a人片免费看久久| 久久亚洲精品成人AV| 国产亚洲成人久久| 无遮挡粉嫩小泬久久久久久久| 欧美伊香蕉久久综合类网站| 久久久久久亚洲精品不卡| 久久香综合精品久久伊人| 久久国产影院| 久久99精品综合国产首页| 久久久这里只有精品加勒比| 国产精品青草久久久久婷婷| 模特私拍国产精品久久| 99久久精品免费看国产一区二区三区| 亚洲va久久久久| 久久婷婷五月综合成人D啪 | 一个色综合久久| 精品久久久无码中文字幕| 精品熟女少妇a∨免费久久| 久久久久av无码免费网| 久久夜色精品国产| 青青青青久久精品国产h| 国产美女久久精品香蕉69| 久久99热这里只有精品国产| 国产伊人久久| 欧美精品一区二区久久| 国产精品狼人久久久久影院| 国产精品久久久久aaaa| 久久精品国产亚洲av水果派| 久久精品毛片免费观看| 国产精品久久久久影视不卡| 久久99久久99小草精品免视看| 久久亚洲高清观看|