• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 3164 Command Network 最小樹形圖

            Description

            After a long lasting war on words, a war on arms finally breaks out between littleken’s and KnuthOcean’s kingdoms. A sudden and violent assault by KnuthOcean’s force has rendered a total failure of littleken’s command network. A provisional network must be built immediately. littleken orders snoopy to take charge of the project.

            With the situation studied to every detail, snoopy believes that the most urgent point is to enable littenken’s commands to reach every disconnected node in the destroyed network and decides on a plan to build a unidirectional communication network. The nodes are distributed on a plane. If littleken’s commands are to be able to be delivered directly from a node A to another node B, a wire will have to be built along the straight line segment connecting the two nodes. Since it’s in wartime, not between all pairs of nodes can wires be built. snoopy wants the plan to require the shortest total length of wires so that the construction can be done very soon.

            Input

            The input contains several test cases. Each test case starts with a line containing two integer N (N ≤ 100), the number of nodes in the destroyed network, and M (M ≤ 104), the number of pairs of nodes between which a wire can be built. The next N lines each contain an ordered pair xi and yi, giving the Cartesian coordinates of the nodes. Then follow M lines each containing two integers i and j between 1 and N (inclusive) meaning a wire can be built between node i and node j for unidirectional command delivery from the former to the latter. littleken’s headquarter is always located at node 1. Process to end of file.

            Output

            For each test case, output exactly one line containing the shortest total length of wires to two digits past the decimal point. In the cases that such a network does not exist, just output ‘poor snoopy’.

            Sample Input

            4 6
            0 6
            4 6
            0 0
            7 20
            1 2
            1 3
            2 3
            3 4
            3 1
            3 2
            4 3
            0 0
            1 0
            0 1
            1 2
            1 3
            4 1
            2 3

            Sample Output

            31.19
            poor snoopy

            Source


             

            最小樹形圖算法(Zhu-Liu Algorithm)

            1.       設最小樹形圖的總權值為cost,置cost0

            2.       除源點外,為其他所有節點Vi找一條權值最小的入邊,加入集合TT就是最短邊的集合。加邊的方法:遍歷所有點到Vi的邊中權值最小的加入集合T,記pre[Vi]為該邊的起點,mincost[Vi]為該邊的權值。

            3.       檢查集合T中的邊是否存在有向環,有則轉到步驟4,無則轉到步驟5。這里需要利用pre數組,枚舉檢查過的點作為搜索的起點,類似dfs的操作判斷有向環。

            4.       將有向環縮成一個點。設環中有點{Vk1,Vk2,…,Vki}i個點,用Vk代替縮成的點。在壓縮后的圖中,更新所有不在環中的點VVk的距離:

            map[V][Vk] = min {map[V][Vkj]-mincost[Vki]} 1<=j<=i

            map[Vk][V] = min {map[Vkj][V]}           1<=j<=I

            5.       cost加上T中有向邊的權值總和就是最小樹形圖的權值總和。

            #include <iostream>
            #include 
            <cmath>

            #define min(a,b) (a<b ? a:b)

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,pre[MAXN];
            double x[MAXN],y[MAXN];
            bool circle[MAXN],visit[MAXN];
            double ans,map[MAXN][MAXN];

            inline 
            double distance(double x1,double y1,double x2,double y2){
                
            return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
            }

            void dfs(int u){
                visit[u]
            =true;
                
            for(int i=2;i<=n;i++)
                    
            if(!visit[i] && map[u][i]!=INF)
                        dfs(i);
            }

            bool connected(){
                memset(visit,
            false,sizeof(visit));
                
            int i,cnt=0;
                
            for(i=1;i<=n;i++)
                    
            if(!visit[i])
                        dfs(i),cnt
            ++;
                
            return cnt==1 ? true : false;
            }

            void min_arborescence(){
                
            int i,j,k;
                memset(circle,
            false,sizeof(circle));
                
            while(true){
                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        pre[i]
            =i;
                        map[i][i]
            =INF;
                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]<map[pre[i]][i])
                                pre[i]
            =j;
                        }

                    }

                    
            for(i=2;i<=n;i++){
                        
            if(circle[i]) continue;
                        j
            =i;
                        memset(visit,
            false,sizeof(visit));
                        
            while(!visit[j] && j!=1){
                            visit[j]
            =true;
                            j
            =pre[j];
                        }

                        
            if(j==1continue;
                        i
            =j;
                        ans
            +=map[pre[i]][i];
                        
            for(j=pre[i];j!=i;j=pre[j]){
                            ans
            +=map[pre[j]][j];
                            circle[j]
            =true;
                        }

                        
            for(j=1;j<=n;j++){
                            
            if(circle[j]) continue;
                            
            if(map[j][i]!=INF)
                                map[j][i]
            -=map[pre[i]][i];
                        }

                        
            for(j=pre[i];j!=i;j=pre[j])
                            
            for(k=1;k<=n;k++){
                                
            if(circle[k]) continue;
                                map[i][k]
            =min(map[i][k],map[j][k]);
                                
            if(map[k][j]!=INF)
                                    map[k][i]
            =min(map[k][i],map[k][j]-map[pre[j]][j]);
                            }

                        
            break;
                    }

                    
            if(i>n){
                        
            for(j=2;j<=n;j++){
                            
            if(circle[j]) continue;
                            ans
            +=map[pre[j]][j];
                        }

                        
            break;
                    }

                }

            }

            int main(){
                
            int i,j,u,v;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    
            for(ans=i=0;i<=n;i++for(j=0;j<=n;j++) map[i][j]=INF;
                    
            for(i=1;i<=n;i++) scanf("%lf %lf",&x[i],&y[i]);
                    
            while(m--){
                        scanf(
            "%d %d",&u,&v);
                        map[u][v]
            =distance(x[u],y[u],x[v],y[v]);
                    }

                    
            if(!connected()) puts("poor snoopy");
                    
            else{
                        min_arborescence();
                        printf(
            "%.2lf\n",ans);
                    }

                }

                
            return 0;
            }

            posted on 2009-05-26 16:03 極限定律 閱讀(670) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年8月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久青草国产精品一区| 午夜精品久久久久久影视777| 国产精品久久成人影院| 精品久久国产一区二区三区香蕉| 久久综合久久综合亚洲| 久久精品国产清高在天天线| 性高朝久久久久久久久久| 久久无码人妻一区二区三区| 欧洲国产伦久久久久久久| 久久99精品久久只有精品| 久久久青草青青国产亚洲免观 | 97久久精品无码一区二区天美 | 久久久久97国产精华液好用吗| 久久成人小视频| 久久影视综合亚洲| 亚洲国产精品人久久| 久久久久人妻一区精品色| 久久人与动人物a级毛片| 精品久久久久久久久久中文字幕| 丁香狠狠色婷婷久久综合| 亚洲精品高清国产一线久久| 国产精品久久久久久久久软件| 国产999精品久久久久久| 久久综合丝袜日本网| 久久久精品人妻一区二区三区四| 久久精品国产男包| 欧美精品乱码99久久蜜桃| 狠狠色伊人久久精品综合网| 青青草原综合久久| 国产L精品国产亚洲区久久| 国产欧美一区二区久久| 亚洲AV日韩AV天堂久久| 久久九九兔免费精品6| 蜜桃麻豆WWW久久囤产精品| AV无码久久久久不卡蜜桃| 亚洲色欲久久久综合网东京热| 99久久99久久精品国产片果冻| 久久精品久久久久观看99水蜜桃| 久久久久免费精品国产| 久久男人Av资源网站无码软件| 国产91久久精品一区二区|