青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品


姚明,81年,97年開始接觸電腦,6年的編程學習經歷, 曾有4年工作經驗,最終轉向基礎理論學習和研究, 現華中理工科技大學在讀,有志于圖形學領域工作發展

EMAIL:alanvincentmail@gmail.com QQ:31547735

隨筆分類(34)

文章分類(99)

相冊

收藏夾(6)

編程技術網站

出國留學網站

數學資源網站

圖形學網站

英語資源網站

自由職業者

搜索

  •  

最新評論

Symbol
Name Explanation Examples
Read as
Category
=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere


<>

!=
inequation x ≠ y means that x and y do not represent the same thing or value.

(The symbols != and <> are primarily from computer science. They are avoided in mathematical texts.)
1 ≠ 2
is not equal to; does not equal
everywhere
<

>

?

?
strict inequality x < y means x is less than y.

x > y means x is greater than y.

x ? y means x is much less than y.

x ? y means x is much greater than y.
3 < 4
5 > 4.

0.003 ? 1000000

is less than, is greater than, is much less than, is much greater than
order theory

<=


>=
inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.

(The symbols <= and >= are primarily from computer science. They are avoided in mathematical texts.)
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to; varies as
everywhere
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1 = {1, 2, 3, 4} ∧ A2 = {2, 4, 5, 7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of ... and ...
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B.

? can also be used for set-theoretic complement as described below.
{1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of ... and ...; the direct product of ... and ...
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
·
multiplication 3 · 4 means the multiplication of 3 by 4. 7 · 8 = 56
times
arithmetic
dot product u · v means the dot product of vectors u and v (1,2,5) · (3,4,−1) = 6
dot
vector algebra
÷

division 6 ÷ 3 or 6 ⁄ 3 means the division of 6 by 3. 2 ÷ 4 = .5

12 ⁄ 4 = 3
divided by
arithmetic
±
plus-minus 6 ± 3 means both 6 + 3 and 6 - 3. The equation x = 5 ± √4, has two solutions, x = 7 and x = 3.
plus or minus
arithmetic
plus-minus 10 ± 2 or eqivalently 10 ± 20% means the range from 10 − 2 to 10 + 2. If a = 100 ± 1 mm, then a is ≥ 99 mm and ≤ 101 mm.
plus or minus
measurement
?
minus-plus 6 ± (3 ? 5) means both 6 + (3 - 5) and 6 - (3 + 5). cos(x ± y) = cos(x) cos(y) ? sin(x) sin(y).
minus or plus
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(i φ/2). √(-1) = i
the complex square root of …

square root
complex numbers
|…|
absolute value or modulus |x| means the distance along the real line (or across the complex plane) between x and zero. |3| = 3

|–5| = |5|

i | = 1

| 3 + 4i | = 5
absolute value (modulus) of
numbers
Euclidean distance |x – y| means the Euclidean distance between x and y. For x = (1,1), and y = (4,5),
|x – y| = √([1–4]2 + [1–5]2) = 5
Euclidean distance between; Euclidean norm of
Geometry
Determinant |A| means the determinant of the matrix A <math>\begin{vmatrix}
1&2 \\ 2&4 \\

\end{vmatrix} = 0</math>

determinant of
Matrix theory
|
divides A single vertical bar is used to denote divisibility.
a|b means a divides b.
Since 15 = 3×5, it is true that 3|15 and 5|15.
divides
Number Theory
!
factorial n ! is the product 1 × 2× ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
T
transpose Swap rows for columns <math>A_{ij} = (A^T)_{ji}</math>
transpose
matrix operations
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics
Row equivalence A~B means that B can be generated by using a series of elementary row operations on A <math>\begin{bmatrix}
1&2 \\ 2&4 \\

\end{bmatrix} \sim \begin{bmatrix}

1&2 \\ 0&0 \\

\end{bmatrix}</math>

is row equivalent to
Matrix theory




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if … then
propositional logic, Heyting algebra


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.

(The symbol ~ has many other uses, so ¬ or the slash notation is preferred.)
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false.

For functions A(x) and B(x), A(x) ∧ B(x) is used to mean min(A(x), B(x)).
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and; min
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false.

For functions A(x) and B(x), A(x) ∨ B(x) is used to mean max(A(x), B(x)).
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or; max
propositional logic, lattice theory



?
exclusive or The statement AB is true when either A or B, but not both, are true. A ? B means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
direct sum The direct sum is a special way of combining several modules into one general module (the symbol ⊕ is used, ? is only for logic).

Most commonly, for vector spaces U, V, and W, the following consequence is used:
U = VW ⇔ (U = V + W) ∧ (VW = )
direct sum of
Abstract algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ ?: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ?: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ?: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y

(Some writers useto mean congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A xor B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
congruence △ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.
is congruent to
geometry
congruence relation a ≡ b (mod n) means a − b is divisible by n 5 ≡ 11 (mod 3)
... is congruent to ... modulo ...
modular arithmetic
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. ? = { 1, 2, 3, …}
the set of …
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ ? : n2 < 20} = { 1, 2, 3, 4}
the set of … such that
set theory


{ }
empty set means the set with no elements. { } means the same. {n ∈ ? : 1 < n2 < 4} =
the empty set
set theory
set membership a ∈ S means a is an element of the set S; a Template:Notin S means a is not an element of S. (1/2)−1 ∈ ?

2−1 Template:Notin ?
is an element of; is not an element of
everywhere, set theory


subset (subset) A ⊆ B means every element of A is also element of B.

(proper subset) A ⊂ B means A ⊆ B but A ≠ B.

(Some writers use the symbol ⊂ as if it were the same as ⊆.)
(A ∩ B) ⊆ A

? ⊂ ?

? ⊂ ?
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.

(Some writers use the symbol ⊃ as if it were the same as ⊇.)
(A ∪ B) ⊇ B

? ⊃ ?
is a superset of
set theory
set-theoretic union (exclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, but not both.
"A or B, but not both."

(inclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, or all the elements from both A and B.
"A or B or both".
A ⊆ B  ⇔  (A ∪ B) = B (inclusive)
the union of … and …

union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ ? : x2 = 1} ∩ ? = {1}
intersected with; intersect
set theory
<math>\Delta</math>
symmetric difference <math> A\Delta B</math> means the set of elements in exactly one of A or B. {1,5,6,8} <math>\Delta</math> {2,5,8} = {1,2,6}
symmetric difference
set theory
?
set-theoretic complement A ? B means the set that contains all those elements of A that are not in B.

− can also be used for set-theoretic complement as described above.
{1,2,3,4} ? {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
parentheses
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let f: ? → ? be defined by f(x) := x2.
from … to
set theory,type theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) := 2x, and g(x) := x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory
?

N
natural numbers N means { 1, 2, 3, ...}, but see the article on natural numbers for a different convention. ? = {|a| : a ∈ ?, a ≠ 0}
N
numbers
?

Z
integers ? means {..., −3, −2, −1, 0, 1, 2, 3, ...} and ?+ means {1, 2, 3, ...} = ?. ? = {p, -p : p ∈ ?} ∪ {0}
Z
numbers
?

Q
rational numbers ? means {p/q : p ∈ ?, q ∈ ?}. 3.14000... ∈ ?

π ∉ ?
Q
numbers
?

R
real numbers ? means the set of real numbers. π ∈ ?

√(−1) ∉ ?
R
numbers
?

C
complex numbers ? means {a + b i : a,b ∈ ?}. i = √(−1) ∈ ?
C
numbers
arbitrary constant C can be any number, most likely unknown; usually occurs when calculating antiderivatives. if f(x) = 6x² + 4x, then F(x) = 2x³ + 2x² + C, where F'(x) = f(x)
C
integral calculus
??

K
real or complex numbers K means the statement holds substituting K for R and also for C.
<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{K}</math>

because

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{R}</math>

and

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{C}</math>.
K
linear algebra
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. <math>\lim_{x\to 0} \frac{1}{|x|} = \infty</math>
infinity
numbers
||…||
norm || x || is the norm of the element x of a normed vector space. || x  + y || ≤  || x ||  +  || y ||
norm of

length of
linear algebra
summation

<math>\sum_{k=1}^{n}{a_k}</math> means a1 + a2 + … + an.

<math>\sum_{k=1}^{4}{k^2}</math> = 12 + 22 + 32 + 42 

= 1 + 4 + 9 + 16 = 30
sum over … from … to … of
arithmetic
product

<math>\prod_{k=1}^na_k</math> means a1a2···an.

<math>\prod_{k=1}^4(k+2)</math> = (1+2)(2+2)(3+2)(4+2)

= 3 × 4 × 5 × 6 = 360
product over … from … to … of
arithmetic
Cartesian product

<math>\prod_{i=0}^{n}{Y_i}</math> means the set of all (n+1)-tuples

(y0, …, yn).

<math>\prod_{n=1}^{3}{\mathbb{R}} = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \mathbb{R}^3</math>

the Cartesian product of; the direct product of
set theory
?
coproduct
coproduct over … from … to … of
category theory


derivative f ′(x) is the derivative of the function f at the point x, i.e., the slope of the tangent to f at x.

The dot notation indicates a time derivative. That is <math>\dot{x}(t)=\frac{\partial}{\partial t}x(t)</math>.

If f(x) := x2, then f ′(x) = 2x
… prime

derivative of
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of

the antiderivative of
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from … to … of … with respect to
calculus
contour integral or closed line integral Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations regarding , and while these formulas involve a closed surface integral, the representations describe only the first integration of the volume over the enclosing surface. Instances where the latter requires simultaneous double integration, the symbol ? would be more appropriate. A third related symbol is the closed volume integral, denoted by the symbol ?.

The contour integral can also frequently be found with a subscript capital letter C, ∮C, denoting that a closed loop integral is, in fact, around a contour C, or sometimes dually appropriately, a circle C. In representations of Gauss's Law, a subscript capital S, ∮S, is used to denote that the integration is over a closed surface.

contour integral of
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (∂f / ∂x1, …, ∂f / ∂xn). If f (x,y,z) := 3xy + z², then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
vector calculus
divergence <math> \nabla \cdot \vec v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla \cdot \vec v = 3y + 2yz </math>.
del dot, divergence of
vector calculus
curl <math> \nabla \times \vec v = \left( {\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \mathbf{i} + \left( {\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \mathbf{j} + \left( {\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \mathbf{k} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla\times\vec v = -y^2\mathbf{i} - 3x\mathbf{k} </math>.
curl of
vector calculus
partial differential With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) := x2y, then ∂f/∂x = 2xy
partial, d
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
||
parallel x || y means x is parallel to y. If l || m and mn then ln.
is parallel to
geometry
?
entailment A ? B means the sentence A entails the sentence B, that is in every model in which A is true, B is also true. A ? A ∨ ¬A
entails
model theory
?
inference x ? y means y is derived from x. AB ? ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
?
normal subgroup N ? G means that N is a normal subgroup of group G. Z(G) ? G
is a normal subgroup of
group theory
/
quotient group G/H means the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
quotient set A/~ means the set of all ~ equivalence classes in A. If we define ~ by x~y ⇔ x-y∈Z, then
R/~ = {{x+n : nZ} : x ∈ (0,1]}
mod
set theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equal to y π ≈ 3.14159
is approximately equal to
everywhere
~
same order of magnitude m ~ n, means the quantities m and n have the general size.

(Note that ~ is used for an approximation that is poor, otherwise use ≈ .)
2 ~ 5

8 × 9 ~ 100

but π2 ≈ 10
roughly similar

poorly approximates
Approximation theory


〈,〉

( | )

< , >

·

:
inner product x,y〉 means the inner product of x and y as defined in an inner product space.

For spatial vectors, the dot product notation, x·y is common.
For matricies, the colon notation may be used.

The standard inner product between two vectors x = (2, 3) and y = (−1, 5) is:
〈x, y〉 = 2×−1 + 3×5 = 13

<math>A:B = \sum_{i,j} A_{ij}B_{ij}</math>

inner product of
linear algebra
tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,2} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 4, 6, 8}}
tensor product of
linear algebra
*
convolution f * g means the convolution of f and g. <math>(f * g )(t) = \int f(\tau) g(t - \tau)\, d\tau</math>
convolution, convoluted with
functional analysis
<math>\bar{x}</math>
mean <math>\bar{x}</math> (often read as "x bar") is the mean (average value of <math>x_i</math>). <math>x = \{1,2,3,4,5\}; \bar{x} = 3</math>.
overbar, … bar
statistics
<math> \overline{z} </math>
complex conjugate <math> \overline{z} </math> is the complex conjugate of z. <math> \overline{3+4i} = 3-4i </math>
conjugate
complex numbers
<math>\triangleq</math>
delta equal to <math>\triangleq</math> means equal by definition. When <math>\triangleq</math> is used, equality is not true generally, but rather equality is true under certain assumptions that are taken in context. Some writers prefer ≡. <math>p(x_1,x_2,...,x_n) \triangleq \prod_{i=1}^n p(x_i | x_{\pi_i})</math>.
equal by definition
everywhere
posted on 2007-10-28 04:12 姚明 閱讀(1398) 評論(1)  編輯 收藏 引用 所屬分類: 高等數學

FeedBack:
# re: 數學符號表(3) 2007-11-26 12:53 蘆婷婷
∮中文 ,算是怎么寫來著?  回復  更多評論
  
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              卡通动漫国产精品| 欧美韩国一区| 狠狠色香婷婷久久亚洲精品| 国产精品高精视频免费| 欧美日韩国产首页| 欧美日韩一区二区三| 欧美日韩国产成人在线91| 欧美日韩国产精品一卡| 国产精品欧美久久| 国产一区二区三区四区hd| 激情欧美一区二区| 亚洲精品乱码久久久久久按摩观| 亚洲精品国精品久久99热| 一本到12不卡视频在线dvd| 亚洲午夜久久久| 欧美影片第一页| 欧美va天堂va视频va在线| 亚洲精品国产欧美| 久久久久久午夜| 女同一区二区| 亚洲日本免费| 亚洲综合国产激情另类一区| 久久国产精品一区二区三区| 美女国内精品自产拍在线播放| 欧美成人在线免费视频| 国产精品久久久久久久久久ktv| 国产亚洲福利| 夜夜嗨av一区二区三区免费区| 亚洲欧美国产精品va在线观看| 久久久美女艺术照精彩视频福利播放| 亚洲国产成人av| 亚洲一区中文| 久久色在线播放| 欧美午夜美女看片| 欧美成人精品激情在线观看| 国产精品盗摄久久久| 精品动漫3d一区二区三区免费| 一区二区欧美亚洲| 免费短视频成人日韩| 国产精品99久久久久久久vr| 久久婷婷国产综合国色天香| 欧美三区美女| 亚洲精品乱码久久久久久按摩观| 亚洲欧美日韩视频二区| 亚洲国产精品视频一区| 亚欧美中日韩视频| 欧美午夜片在线观看| 亚洲成人自拍视频| 欧美自拍偷拍午夜视频| 亚洲裸体视频| 欧美jizz19性欧美| 激情欧美日韩| 久久婷婷国产综合精品青草| 亚洲欧美日韩视频二区| 欧美午夜电影完整版| 亚洲精品久久久久久久久久久| 久久综合九色欧美综合狠狠| 亚洲一区久久久| 欧美午夜视频在线| 一区二区三区四区在线| 欧美r片在线| 久久久久久夜| 亚洲第一在线综合在线| 女生裸体视频一区二区三区| 久久久久久久久一区二区| 国产主播一区二区三区| 久久久精品一区| 欧美一区二区私人影院日本| 国产一区二区在线观看免费| 久久精品国产免费看久久精品| 午夜精品99久久免费| 国产欧美精品va在线观看| 欧美一区视频| 性欧美大战久久久久久久久| 国产日韩精品一区二区| 久久精品国产免费观看| 久久先锋资源| 欧美一级大片在线免费观看| 亚洲视频你懂的| 亚洲精选国产| 麻豆9191精品国产| 欧美在线一二三区| 在线观看精品视频| 亚洲第一天堂av| 亚洲一区二区毛片| 女仆av观看一区| 夜夜精品视频| 亚洲精品综合久久中文字幕| 国产精品av免费在线观看| 亚洲欧美日韩第一区| 性欧美办公室18xxxxhd| 亚洲黄网站黄| 一区二区三欧美| 黄色一区二区在线观看| 亚洲大片av| 国产精品每日更新| 久久免费高清| 欧美日韩精品综合| 久久婷婷国产综合尤物精品| 欧美精品七区| 久久久国产精品一区| 欧美电影免费观看高清| 欧美在线播放| 欧美激情按摩| 久久全国免费视频| 欧美视频一区| 欧美88av| 国产欧美日韩亚州综合| 欧美激情一区二区三区| 国产农村妇女毛片精品久久莱园子 | 久久午夜av| 这里只有精品电影| 久久亚洲精品一区二区| 亚洲欧美日本伦理| 欧美高清在线观看| 久久综合伊人77777麻豆| 国产精品www994| 亚洲国产天堂久久综合| 在线不卡视频| 欧美一区二区性| 校园春色国产精品| 欧美天堂亚洲电影院在线观看 | 亚洲欧美精品中文字幕在线| 亚洲人成亚洲人成在线观看| 久久福利影视| 欧美资源在线观看| 国产精品久久久久久久久久三级| 亚洲国产99| 亚洲精品欧美激情| 农村妇女精品| 欧美激情精品久久久久久黑人| 国内精品一区二区三区| 午夜一区二区三视频在线观看 | 欧美伊人久久大香线蕉综合69| 蜜臀久久久99精品久久久久久 | 中文av一区特黄| 一本色道久久88精品综合| 欧美jjzz| 亚洲国产日韩一级| 亚洲高清二区| 另类欧美日韩国产在线| 久久伊人亚洲| 亚洲国产成人精品女人久久久| 欧美一区二区三区播放老司机| 欧美诱惑福利视频| 国产视频不卡| 久久久久久综合| 欧美91大片| 亚洲精品影视| 欧美日韩视频免费播放| 亚洲欧洲日产国码二区| 一本久久a久久免费精品不卡| 欧美精品在线观看91| 99视频一区二区| 欧美在线亚洲综合一区| 国产综合久久久久久| 久久亚洲国产成人| 亚洲第一页在线| 亚洲午夜在线观看视频在线| 欧美日韩在线影院| 亚洲欧美激情诱惑| 蜜臀久久99精品久久久久久9| 亚洲黄色av一区| 欧美午夜免费影院| 久久精品亚洲一区二区| 亚洲国产欧美另类丝袜| 亚洲综合日韩在线| 狠狠色狠色综合曰曰| 欧美激情综合色| 亚洲自拍16p| 欧美国产精品专区| 午夜精品久久久久久久男人的天堂| 国产欧美一区二区三区国产幕精品| 久久久无码精品亚洲日韩按摩| 亚洲国产综合在线看不卡| 亚洲主播在线| 亚洲国产精品免费| 国产精品久久久久毛片大屁完整版| 欧美在线欧美在线| 亚洲乱码精品一二三四区日韩在线 | 免费成人av在线| 一本色道久久88亚洲综合88| 久久久噜噜噜久久人人看| 99热在线精品观看| 国产一区二区日韩精品| 欧美日本韩国| 久久九九久精品国产免费直播| 最新成人av网站| 久久亚洲精品欧美| 亚洲欧美激情诱惑| 亚洲三级色网| 好吊色欧美一区二区三区视频| 欧美日韩国产欧| 蜜臀va亚洲va欧美va天堂| 欧美一区二区啪啪| 亚洲午夜精品17c| 亚洲精选在线| 亚洲国产精品第一区二区| 麻豆成人在线| 欧美在线视频观看免费网站|