青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品


姚明,81年,97年開始接觸電腦,6年的編程學習經歷, 曾有4年工作經驗,最終轉向基礎理論學習和研究, 現華中理工科技大學在讀,有志于圖形學領域工作發展

EMAIL:alanvincentmail@gmail.com QQ:31547735

隨筆分類(34)

文章分類(99)

相冊

收藏夾(6)

編程技術網站

出國留學網站

數學資源網站

圖形學網站

英語資源網站

自由職業者

搜索

  •  

最新評論

Symbol
Name Explanation Examples
Read as
Category
=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere


<>

!=
inequation x ≠ y means that x and y do not represent the same thing or value.

(The symbols != and <> are primarily from computer science. They are avoided in mathematical texts.)
1 ≠ 2
is not equal to; does not equal
everywhere
<

>

?

?
strict inequality x < y means x is less than y.

x > y means x is greater than y.

x ? y means x is much less than y.

x ? y means x is much greater than y.
3 < 4
5 > 4.

0.003 ? 1000000

is less than, is greater than, is much less than, is much greater than
order theory

<=


>=
inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.

(The symbols <= and >= are primarily from computer science. They are avoided in mathematical texts.)
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to; varies as
everywhere
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1 = {1, 2, 3, 4} ∧ A2 = {2, 4, 5, 7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of ... and ...
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B.

? can also be used for set-theoretic complement as described below.
{1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of ... and ...; the direct product of ... and ...
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
·
multiplication 3 · 4 means the multiplication of 3 by 4. 7 · 8 = 56
times
arithmetic
dot product u · v means the dot product of vectors u and v (1,2,5) · (3,4,−1) = 6
dot
vector algebra
÷

division 6 ÷ 3 or 6 ⁄ 3 means the division of 6 by 3. 2 ÷ 4 = .5

12 ⁄ 4 = 3
divided by
arithmetic
±
plus-minus 6 ± 3 means both 6 + 3 and 6 - 3. The equation x = 5 ± √4, has two solutions, x = 7 and x = 3.
plus or minus
arithmetic
plus-minus 10 ± 2 or eqivalently 10 ± 20% means the range from 10 − 2 to 10 + 2. If a = 100 ± 1 mm, then a is ≥ 99 mm and ≤ 101 mm.
plus or minus
measurement
?
minus-plus 6 ± (3 ? 5) means both 6 + (3 - 5) and 6 - (3 + 5). cos(x ± y) = cos(x) cos(y) ? sin(x) sin(y).
minus or plus
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(i φ/2). √(-1) = i
the complex square root of …

square root
complex numbers
|…|
absolute value or modulus |x| means the distance along the real line (or across the complex plane) between x and zero. |3| = 3

|–5| = |5|

i | = 1

| 3 + 4i | = 5
absolute value (modulus) of
numbers
Euclidean distance |x – y| means the Euclidean distance between x and y. For x = (1,1), and y = (4,5),
|x – y| = √([1–4]2 + [1–5]2) = 5
Euclidean distance between; Euclidean norm of
Geometry
Determinant |A| means the determinant of the matrix A <math>\begin{vmatrix}
1&2 \\ 2&4 \\

\end{vmatrix} = 0</math>

determinant of
Matrix theory
|
divides A single vertical bar is used to denote divisibility.
a|b means a divides b.
Since 15 = 3×5, it is true that 3|15 and 5|15.
divides
Number Theory
!
factorial n ! is the product 1 × 2× ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
T
transpose Swap rows for columns <math>A_{ij} = (A^T)_{ji}</math>
transpose
matrix operations
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics
Row equivalence A~B means that B can be generated by using a series of elementary row operations on A <math>\begin{bmatrix}
1&2 \\ 2&4 \\

\end{bmatrix} \sim \begin{bmatrix}

1&2 \\ 0&0 \\

\end{bmatrix}</math>

is row equivalent to
Matrix theory




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if … then
propositional logic, Heyting algebra


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.

(The symbol ~ has many other uses, so ¬ or the slash notation is preferred.)
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false.

For functions A(x) and B(x), A(x) ∧ B(x) is used to mean min(A(x), B(x)).
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and; min
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false.

For functions A(x) and B(x), A(x) ∨ B(x) is used to mean max(A(x), B(x)).
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or; max
propositional logic, lattice theory



?
exclusive or The statement AB is true when either A or B, but not both, are true. A ? B means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
direct sum The direct sum is a special way of combining several modules into one general module (the symbol ⊕ is used, ? is only for logic).

Most commonly, for vector spaces U, V, and W, the following consequence is used:
U = VW ⇔ (U = V + W) ∧ (VW = )
direct sum of
Abstract algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ ?: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ?: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ?: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y

(Some writers useto mean congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A xor B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
congruence △ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.
is congruent to
geometry
congruence relation a ≡ b (mod n) means a − b is divisible by n 5 ≡ 11 (mod 3)
... is congruent to ... modulo ...
modular arithmetic
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. ? = { 1, 2, 3, …}
the set of …
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ ? : n2 < 20} = { 1, 2, 3, 4}
the set of … such that
set theory


{ }
empty set means the set with no elements. { } means the same. {n ∈ ? : 1 < n2 < 4} =
the empty set
set theory
set membership a ∈ S means a is an element of the set S; a Template:Notin S means a is not an element of S. (1/2)−1 ∈ ?

2−1 Template:Notin ?
is an element of; is not an element of
everywhere, set theory


subset (subset) A ⊆ B means every element of A is also element of B.

(proper subset) A ⊂ B means A ⊆ B but A ≠ B.

(Some writers use the symbol ⊂ as if it were the same as ⊆.)
(A ∩ B) ⊆ A

? ⊂ ?

? ⊂ ?
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.

(Some writers use the symbol ⊃ as if it were the same as ⊇.)
(A ∪ B) ⊇ B

? ⊃ ?
is a superset of
set theory
set-theoretic union (exclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, but not both.
"A or B, but not both."

(inclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, or all the elements from both A and B.
"A or B or both".
A ⊆ B  ⇔  (A ∪ B) = B (inclusive)
the union of … and …

union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ ? : x2 = 1} ∩ ? = {1}
intersected with; intersect
set theory
<math>\Delta</math>
symmetric difference <math> A\Delta B</math> means the set of elements in exactly one of A or B. {1,5,6,8} <math>\Delta</math> {2,5,8} = {1,2,6}
symmetric difference
set theory
?
set-theoretic complement A ? B means the set that contains all those elements of A that are not in B.

− can also be used for set-theoretic complement as described above.
{1,2,3,4} ? {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
parentheses
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let f: ? → ? be defined by f(x) := x2.
from … to
set theory,type theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) := 2x, and g(x) := x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory
?

N
natural numbers N means { 1, 2, 3, ...}, but see the article on natural numbers for a different convention. ? = {|a| : a ∈ ?, a ≠ 0}
N
numbers
?

Z
integers ? means {..., −3, −2, −1, 0, 1, 2, 3, ...} and ?+ means {1, 2, 3, ...} = ?. ? = {p, -p : p ∈ ?} ∪ {0}
Z
numbers
?

Q
rational numbers ? means {p/q : p ∈ ?, q ∈ ?}. 3.14000... ∈ ?

π ∉ ?
Q
numbers
?

R
real numbers ? means the set of real numbers. π ∈ ?

√(−1) ∉ ?
R
numbers
?

C
complex numbers ? means {a + b i : a,b ∈ ?}. i = √(−1) ∈ ?
C
numbers
arbitrary constant C can be any number, most likely unknown; usually occurs when calculating antiderivatives. if f(x) = 6x² + 4x, then F(x) = 2x³ + 2x² + C, where F'(x) = f(x)
C
integral calculus
??

K
real or complex numbers K means the statement holds substituting K for R and also for C.
<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{K}</math>

because

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{R}</math>

and

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{C}</math>.
K
linear algebra
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. <math>\lim_{x\to 0} \frac{1}{|x|} = \infty</math>
infinity
numbers
||…||
norm || x || is the norm of the element x of a normed vector space. || x  + y || ≤  || x ||  +  || y ||
norm of

length of
linear algebra
summation

<math>\sum_{k=1}^{n}{a_k}</math> means a1 + a2 + … + an.

<math>\sum_{k=1}^{4}{k^2}</math> = 12 + 22 + 32 + 42 

= 1 + 4 + 9 + 16 = 30
sum over … from … to … of
arithmetic
product

<math>\prod_{k=1}^na_k</math> means a1a2···an.

<math>\prod_{k=1}^4(k+2)</math> = (1+2)(2+2)(3+2)(4+2)

= 3 × 4 × 5 × 6 = 360
product over … from … to … of
arithmetic
Cartesian product

<math>\prod_{i=0}^{n}{Y_i}</math> means the set of all (n+1)-tuples

(y0, …, yn).

<math>\prod_{n=1}^{3}{\mathbb{R}} = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \mathbb{R}^3</math>

the Cartesian product of; the direct product of
set theory
?
coproduct
coproduct over … from … to … of
category theory


derivative f ′(x) is the derivative of the function f at the point x, i.e., the slope of the tangent to f at x.

The dot notation indicates a time derivative. That is <math>\dot{x}(t)=\frac{\partial}{\partial t}x(t)</math>.

If f(x) := x2, then f ′(x) = 2x
… prime

derivative of
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of

the antiderivative of
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from … to … of … with respect to
calculus
contour integral or closed line integral Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations regarding , and while these formulas involve a closed surface integral, the representations describe only the first integration of the volume over the enclosing surface. Instances where the latter requires simultaneous double integration, the symbol ? would be more appropriate. A third related symbol is the closed volume integral, denoted by the symbol ?.

The contour integral can also frequently be found with a subscript capital letter C, ∮C, denoting that a closed loop integral is, in fact, around a contour C, or sometimes dually appropriately, a circle C. In representations of Gauss's Law, a subscript capital S, ∮S, is used to denote that the integration is over a closed surface.

contour integral of
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (∂f / ∂x1, …, ∂f / ∂xn). If f (x,y,z) := 3xy + z², then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
vector calculus
divergence <math> \nabla \cdot \vec v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla \cdot \vec v = 3y + 2yz </math>.
del dot, divergence of
vector calculus
curl <math> \nabla \times \vec v = \left( {\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \mathbf{i} + \left( {\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \mathbf{j} + \left( {\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \mathbf{k} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla\times\vec v = -y^2\mathbf{i} - 3x\mathbf{k} </math>.
curl of
vector calculus
partial differential With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) := x2y, then ∂f/∂x = 2xy
partial, d
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
||
parallel x || y means x is parallel to y. If l || m and mn then ln.
is parallel to
geometry
?
entailment A ? B means the sentence A entails the sentence B, that is in every model in which A is true, B is also true. A ? A ∨ ¬A
entails
model theory
?
inference x ? y means y is derived from x. AB ? ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
?
normal subgroup N ? G means that N is a normal subgroup of group G. Z(G) ? G
is a normal subgroup of
group theory
/
quotient group G/H means the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
quotient set A/~ means the set of all ~ equivalence classes in A. If we define ~ by x~y ⇔ x-y∈Z, then
R/~ = {{x+n : nZ} : x ∈ (0,1]}
mod
set theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equal to y π ≈ 3.14159
is approximately equal to
everywhere
~
same order of magnitude m ~ n, means the quantities m and n have the general size.

(Note that ~ is used for an approximation that is poor, otherwise use ≈ .)
2 ~ 5

8 × 9 ~ 100

but π2 ≈ 10
roughly similar

poorly approximates
Approximation theory


〈,〉

( | )

< , >

·

:
inner product x,y〉 means the inner product of x and y as defined in an inner product space.

For spatial vectors, the dot product notation, x·y is common.
For matricies, the colon notation may be used.

The standard inner product between two vectors x = (2, 3) and y = (−1, 5) is:
〈x, y〉 = 2×−1 + 3×5 = 13

<math>A:B = \sum_{i,j} A_{ij}B_{ij}</math>

inner product of
linear algebra
tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,2} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 4, 6, 8}}
tensor product of
linear algebra
*
convolution f * g means the convolution of f and g. <math>(f * g )(t) = \int f(\tau) g(t - \tau)\, d\tau</math>
convolution, convoluted with
functional analysis
<math>\bar{x}</math>
mean <math>\bar{x}</math> (often read as "x bar") is the mean (average value of <math>x_i</math>). <math>x = \{1,2,3,4,5\}; \bar{x} = 3</math>.
overbar, … bar
statistics
<math> \overline{z} </math>
complex conjugate <math> \overline{z} </math> is the complex conjugate of z. <math> \overline{3+4i} = 3-4i </math>
conjugate
complex numbers
<math>\triangleq</math>
delta equal to <math>\triangleq</math> means equal by definition. When <math>\triangleq</math> is used, equality is not true generally, but rather equality is true under certain assumptions that are taken in context. Some writers prefer ≡. <math>p(x_1,x_2,...,x_n) \triangleq \prod_{i=1}^n p(x_i | x_{\pi_i})</math>.
equal by definition
everywhere
posted on 2007-10-28 04:12 姚明 閱讀(1398) 評論(1)  編輯 收藏 引用 所屬分類: 高等數學

FeedBack:
# re: 數學符號表(3) 2007-11-26 12:53 蘆婷婷
∮中文 ,算是怎么寫來著?  回復  更多評論
  
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              一区二区三区高清视频在线观看| 91久久久在线| 欧美在线观看天堂一区二区三区| 欧美大尺度在线观看| 久久精品男女| 久久亚洲精品视频| 欧美成人三级在线| 91久久午夜| 亚洲私人影院在线观看| 亚洲自拍偷拍麻豆| 久久久午夜电影| 欧美乱妇高清无乱码| 欧美性感一类影片在线播放 | 国产午夜亚洲精品不卡| 国产伊人精品| 欧美一区二区高清| 午夜精品一区二区三区在线视 | 巨胸喷奶水www久久久免费动漫| 欧美好骚综合网| 国产视频久久久久| 亚洲精品日韩在线观看| 欧美一进一出视频| 亚洲精品日本| 久久久久久综合| 国产精品久久久久久影院8一贰佰 国产精品久久久久久影视 | 久久精品日韩| 欧美午夜片在线免费观看| 韩国av一区二区三区在线观看 | 亚洲大胆在线| 午夜精品成人在线视频| 欧美另类久久久品| 亚洲国产成人不卡| 91久久精品一区| 亚洲成人在线网站| 亚洲午夜极品| 欧美成人精品1314www| 国产精品久久精品日日| 亚洲国产天堂久久综合| 欧美一区二区视频在线| 国产在线麻豆精品观看| 一区二区欧美日韩| 免费久久99精品国产自| 亚洲一区二区在线看| 欧美黄色日本| 亚洲片在线观看| 亚洲福利免费| 免费不卡在线观看| 亚洲国产精品123| 免费视频亚洲| 久久久久久久欧美精品| 国内成人精品一区| 久久亚洲视频| 久久aⅴ乱码一区二区三区| 国产精品自在欧美一区| 亚洲综合国产激情另类一区| 99国产欧美久久久精品| 欧美日韩在线一二三| 99国产精品久久久久久久成人热| 欧美大片第1页| 美乳少妇欧美精品| 最近看过的日韩成人| 亚洲国产第一页| 欧美国产视频一区二区| 日韩一二三区视频| 99精品国产一区二区青青牛奶| 欧美激情第3页| 亚洲视频碰碰| 一区二区三区精品| 国产日韩亚洲| 麻豆成人小视频| 欧美成人精品高清在线播放| 亚洲精品小视频在线观看| 亚洲日本视频| 国产精品女主播一区二区三区| 欧美一区二区视频在线观看2020 | 卡一卡二国产精品| 亚洲尤物在线视频观看| 国产免费一区二区三区香蕉精| 欧美一区二区三区的| 欧美在线欧美在线| 亚洲精品午夜精品| 一本色道久久综合狠狠躁的推荐| 国产精品日韩高清| 蜜桃av久久久亚洲精品| 欧美久久电影| 欧美一级播放| 免费观看在线综合色| 亚洲私拍自拍| 久久人人97超碰人人澡爱香蕉| 日韩亚洲成人av在线| 亚洲一区二区三区高清不卡| 一区精品久久| 欧美刺激性大交免费视频| 亚洲黄页一区| 中国女人久久久| 在线 亚洲欧美在线综合一区| 91久久视频| 久久精品日产第一区二区三区| 亚洲免费观看高清完整版在线观看熊 | 亚洲男人第一网站| 久久精品91| 亚洲欧美国产另类| 欧美a级大片| 久久久久久久综合日本| 欧美日韩高清在线播放| 久久综合久久久久88| 欧美午夜精品理论片a级按摩| 久久精品色图| 欧美日韩国产小视频| 欧美顶级少妇做爰| 国产九色精品成人porny| 亚洲久久一区| 亚洲国产片色| 久久福利视频导航| 亚洲综合导航| 欧美激情综合色综合啪啪| 久久久噜噜噜久久中文字幕色伊伊 | 一本久道久久综合中文字幕| 好吊视频一区二区三区四区| 妖精成人www高清在线观看| 亚洲电影激情视频网站| 西瓜成人精品人成网站| 亚洲一区二区三区三| 欧美人与性动交α欧美精品济南到| 久久亚洲精品一区二区| 国内精品久久久久久久97牛牛| 亚洲综合首页| 欧美一区二区三区精品电影| 欧美网站在线| 一本久道久久综合中文字幕| 欧美中在线观看| 欧美日韩三级| 亚洲精品专区| 亚洲无毛电影| 国产精品大片wwwwww| 夜夜爽www精品| 亚洲一区二区视频| 国产精品久久久亚洲一区| 一区二区三区毛片| 午夜精品国产| 国产一区二区三区丝袜| 久久精品中文字幕一区二区三区| 久久久之久亚州精品露出| 激情久久五月天| 老司机免费视频久久| 91久久国产精品91久久性色| 夜夜狂射影院欧美极品| 欧美视频日韩视频在线观看| 亚洲一级高清| 亚洲黄色免费网站| 99国产精品| 亚洲精品女av网站| 欧美sm重口味系列视频在线观看| 欧美高清在线播放| 99精品视频免费| 国产精品v欧美精品v日本精品动漫| 一区二区国产精品| 亚欧成人在线| 91久久精品一区二区别| 欧美三区不卡| 久久精品水蜜桃av综合天堂| 亚洲高清网站| 午夜亚洲激情| 亚洲国产成人精品女人久久久 | 亚洲私人影院在线观看| 久久精精品视频| 亚洲精品日产精品乱码不卡| 欧美色精品在线视频| 欧美一区二区三区免费大片| 亚洲福利精品| 久久久久久久综合日本| 一区二区三区免费在线观看| 国产一区二区三区在线免费观看| 男人天堂欧美日韩| 亚洲女同同性videoxma| 欧美激情国产日韩| 欧美自拍偷拍午夜视频| 亚洲伦理在线| 狠狠色伊人亚洲综合成人| 欧美日韩一区在线观看视频| 久久久久成人网| 亚洲一区二区三区四区中文| 欧美激情1区| 久久久久综合网| 亚洲一区二区免费视频| 亚洲国产精品欧美一二99| 国产精品影院在线观看| 欧美日韩八区| 欧美91精品| 久久久亚洲影院你懂的| 亚洲欧美日韩系列| 一区二区不卡在线视频 午夜欧美不卡在 | 久久国产夜色精品鲁鲁99| 久久精品视频免费| 一本一本a久久| 伊人精品成人久久综合软件| 国产精品无码专区在线观看| 欧美日韩少妇| 欧美激情一区二区三区全黄| 久久精品日产第一区二区|