青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品


姚明,81年,97年開始接觸電腦,6年的編程學習經歷, 曾有4年工作經驗,最終轉向基礎理論學習和研究, 現華中理工科技大學在讀,有志于圖形學領域工作發展

EMAIL:alanvincentmail@gmail.com QQ:31547735

隨筆分類(34)

文章分類(99)

相冊

收藏夾(6)

編程技術網站

出國留學網站

數學資源網站

圖形學網站

英語資源網站

自由職業者

搜索

  •  

最新評論

Symbol
Name Explanation Examples
Read as
Category
=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere


<>

!=
inequation x ≠ y means that x and y do not represent the same thing or value.

(The symbols != and <> are primarily from computer science. They are avoided in mathematical texts.)
1 ≠ 2
is not equal to; does not equal
everywhere
<

>

?

?
strict inequality x < y means x is less than y.

x > y means x is greater than y.

x ? y means x is much less than y.

x ? y means x is much greater than y.
3 < 4
5 > 4.

0.003 ? 1000000

is less than, is greater than, is much less than, is much greater than
order theory

<=


>=
inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.

(The symbols <= and >= are primarily from computer science. They are avoided in mathematical texts.)
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to; varies as
everywhere
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1 = {1, 2, 3, 4} ∧ A2 = {2, 4, 5, 7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of ... and ...
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B.

? can also be used for set-theoretic complement as described below.
{1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of ... and ...; the direct product of ... and ...
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
·
multiplication 3 · 4 means the multiplication of 3 by 4. 7 · 8 = 56
times
arithmetic
dot product u · v means the dot product of vectors u and v (1,2,5) · (3,4,−1) = 6
dot
vector algebra
÷

division 6 ÷ 3 or 6 ⁄ 3 means the division of 6 by 3. 2 ÷ 4 = .5

12 ⁄ 4 = 3
divided by
arithmetic
±
plus-minus 6 ± 3 means both 6 + 3 and 6 - 3. The equation x = 5 ± √4, has two solutions, x = 7 and x = 3.
plus or minus
arithmetic
plus-minus 10 ± 2 or eqivalently 10 ± 20% means the range from 10 − 2 to 10 + 2. If a = 100 ± 1 mm, then a is ≥ 99 mm and ≤ 101 mm.
plus or minus
measurement
?
minus-plus 6 ± (3 ? 5) means both 6 + (3 - 5) and 6 - (3 + 5). cos(x ± y) = cos(x) cos(y) ? sin(x) sin(y).
minus or plus
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(i φ/2). √(-1) = i
the complex square root of …

square root
complex numbers
|…|
absolute value or modulus |x| means the distance along the real line (or across the complex plane) between x and zero. |3| = 3

|–5| = |5|

i | = 1

| 3 + 4i | = 5
absolute value (modulus) of
numbers
Euclidean distance |x – y| means the Euclidean distance between x and y. For x = (1,1), and y = (4,5),
|x – y| = √([1–4]2 + [1–5]2) = 5
Euclidean distance between; Euclidean norm of
Geometry
Determinant |A| means the determinant of the matrix A <math>\begin{vmatrix}
1&2 \\ 2&4 \\

\end{vmatrix} = 0</math>

determinant of
Matrix theory
|
divides A single vertical bar is used to denote divisibility.
a|b means a divides b.
Since 15 = 3×5, it is true that 3|15 and 5|15.
divides
Number Theory
!
factorial n ! is the product 1 × 2× ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
T
transpose Swap rows for columns <math>A_{ij} = (A^T)_{ji}</math>
transpose
matrix operations
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics
Row equivalence A~B means that B can be generated by using a series of elementary row operations on A <math>\begin{bmatrix}
1&2 \\ 2&4 \\

\end{bmatrix} \sim \begin{bmatrix}

1&2 \\ 0&0 \\

\end{bmatrix}</math>

is row equivalent to
Matrix theory




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if … then
propositional logic, Heyting algebra


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.

(The symbol ~ has many other uses, so ¬ or the slash notation is preferred.)
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false.

For functions A(x) and B(x), A(x) ∧ B(x) is used to mean min(A(x), B(x)).
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and; min
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false.

For functions A(x) and B(x), A(x) ∨ B(x) is used to mean max(A(x), B(x)).
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or; max
propositional logic, lattice theory



?
exclusive or The statement AB is true when either A or B, but not both, are true. A ? B means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
direct sum The direct sum is a special way of combining several modules into one general module (the symbol ⊕ is used, ? is only for logic).

Most commonly, for vector spaces U, V, and W, the following consequence is used:
U = VW ⇔ (U = V + W) ∧ (VW = )
direct sum of
Abstract algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ ?: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ?: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ?: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y

(Some writers useto mean congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A xor B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
congruence △ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.
is congruent to
geometry
congruence relation a ≡ b (mod n) means a − b is divisible by n 5 ≡ 11 (mod 3)
... is congruent to ... modulo ...
modular arithmetic
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. ? = { 1, 2, 3, …}
the set of …
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ ? : n2 < 20} = { 1, 2, 3, 4}
the set of … such that
set theory


{ }
empty set means the set with no elements. { } means the same. {n ∈ ? : 1 < n2 < 4} =
the empty set
set theory
set membership a ∈ S means a is an element of the set S; a Template:Notin S means a is not an element of S. (1/2)−1 ∈ ?

2−1 Template:Notin ?
is an element of; is not an element of
everywhere, set theory


subset (subset) A ⊆ B means every element of A is also element of B.

(proper subset) A ⊂ B means A ⊆ B but A ≠ B.

(Some writers use the symbol ⊂ as if it were the same as ⊆.)
(A ∩ B) ⊆ A

? ⊂ ?

? ⊂ ?
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.

(Some writers use the symbol ⊃ as if it were the same as ⊇.)
(A ∪ B) ⊇ B

? ⊃ ?
is a superset of
set theory
set-theoretic union (exclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, but not both.
"A or B, but not both."

(inclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, or all the elements from both A and B.
"A or B or both".
A ⊆ B  ⇔  (A ∪ B) = B (inclusive)
the union of … and …

union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ ? : x2 = 1} ∩ ? = {1}
intersected with; intersect
set theory
<math>\Delta</math>
symmetric difference <math> A\Delta B</math> means the set of elements in exactly one of A or B. {1,5,6,8} <math>\Delta</math> {2,5,8} = {1,2,6}
symmetric difference
set theory
?
set-theoretic complement A ? B means the set that contains all those elements of A that are not in B.

− can also be used for set-theoretic complement as described above.
{1,2,3,4} ? {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
parentheses
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let f: ? → ? be defined by f(x) := x2.
from … to
set theory,type theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) := 2x, and g(x) := x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory
?

N
natural numbers N means { 1, 2, 3, ...}, but see the article on natural numbers for a different convention. ? = {|a| : a ∈ ?, a ≠ 0}
N
numbers
?

Z
integers ? means {..., −3, −2, −1, 0, 1, 2, 3, ...} and ?+ means {1, 2, 3, ...} = ?. ? = {p, -p : p ∈ ?} ∪ {0}
Z
numbers
?

Q
rational numbers ? means {p/q : p ∈ ?, q ∈ ?}. 3.14000... ∈ ?

π ∉ ?
Q
numbers
?

R
real numbers ? means the set of real numbers. π ∈ ?

√(−1) ∉ ?
R
numbers
?

C
complex numbers ? means {a + b i : a,b ∈ ?}. i = √(−1) ∈ ?
C
numbers
arbitrary constant C can be any number, most likely unknown; usually occurs when calculating antiderivatives. if f(x) = 6x² + 4x, then F(x) = 2x³ + 2x² + C, where F'(x) = f(x)
C
integral calculus
??

K
real or complex numbers K means the statement holds substituting K for R and also for C.
<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{K}</math>

because

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{R}</math>

and

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{C}</math>.
K
linear algebra
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. <math>\lim_{x\to 0} \frac{1}{|x|} = \infty</math>
infinity
numbers
||…||
norm || x || is the norm of the element x of a normed vector space. || x  + y || ≤  || x ||  +  || y ||
norm of

length of
linear algebra
summation

<math>\sum_{k=1}^{n}{a_k}</math> means a1 + a2 + … + an.

<math>\sum_{k=1}^{4}{k^2}</math> = 12 + 22 + 32 + 42 

= 1 + 4 + 9 + 16 = 30
sum over … from … to … of
arithmetic
product

<math>\prod_{k=1}^na_k</math> means a1a2···an.

<math>\prod_{k=1}^4(k+2)</math> = (1+2)(2+2)(3+2)(4+2)

= 3 × 4 × 5 × 6 = 360
product over … from … to … of
arithmetic
Cartesian product

<math>\prod_{i=0}^{n}{Y_i}</math> means the set of all (n+1)-tuples

(y0, …, yn).

<math>\prod_{n=1}^{3}{\mathbb{R}} = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \mathbb{R}^3</math>

the Cartesian product of; the direct product of
set theory
?
coproduct
coproduct over … from … to … of
category theory


derivative f ′(x) is the derivative of the function f at the point x, i.e., the slope of the tangent to f at x.

The dot notation indicates a time derivative. That is <math>\dot{x}(t)=\frac{\partial}{\partial t}x(t)</math>.

If f(x) := x2, then f ′(x) = 2x
… prime

derivative of
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of

the antiderivative of
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from … to … of … with respect to
calculus
contour integral or closed line integral Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations regarding , and while these formulas involve a closed surface integral, the representations describe only the first integration of the volume over the enclosing surface. Instances where the latter requires simultaneous double integration, the symbol ? would be more appropriate. A third related symbol is the closed volume integral, denoted by the symbol ?.

The contour integral can also frequently be found with a subscript capital letter C, ∮C, denoting that a closed loop integral is, in fact, around a contour C, or sometimes dually appropriately, a circle C. In representations of Gauss's Law, a subscript capital S, ∮S, is used to denote that the integration is over a closed surface.

contour integral of
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (∂f / ∂x1, …, ∂f / ∂xn). If f (x,y,z) := 3xy + z², then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
vector calculus
divergence <math> \nabla \cdot \vec v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla \cdot \vec v = 3y + 2yz </math>.
del dot, divergence of
vector calculus
curl <math> \nabla \times \vec v = \left( {\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \mathbf{i} + \left( {\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \mathbf{j} + \left( {\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \mathbf{k} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla\times\vec v = -y^2\mathbf{i} - 3x\mathbf{k} </math>.
curl of
vector calculus
partial differential With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) := x2y, then ∂f/∂x = 2xy
partial, d
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
||
parallel x || y means x is parallel to y. If l || m and mn then ln.
is parallel to
geometry
?
entailment A ? B means the sentence A entails the sentence B, that is in every model in which A is true, B is also true. A ? A ∨ ¬A
entails
model theory
?
inference x ? y means y is derived from x. AB ? ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
?
normal subgroup N ? G means that N is a normal subgroup of group G. Z(G) ? G
is a normal subgroup of
group theory
/
quotient group G/H means the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
quotient set A/~ means the set of all ~ equivalence classes in A. If we define ~ by x~y ⇔ x-y∈Z, then
R/~ = {{x+n : nZ} : x ∈ (0,1]}
mod
set theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equal to y π ≈ 3.14159
is approximately equal to
everywhere
~
same order of magnitude m ~ n, means the quantities m and n have the general size.

(Note that ~ is used for an approximation that is poor, otherwise use ≈ .)
2 ~ 5

8 × 9 ~ 100

but π2 ≈ 10
roughly similar

poorly approximates
Approximation theory


〈,〉

( | )

< , >

·

:
inner product x,y〉 means the inner product of x and y as defined in an inner product space.

For spatial vectors, the dot product notation, x·y is common.
For matricies, the colon notation may be used.

The standard inner product between two vectors x = (2, 3) and y = (−1, 5) is:
〈x, y〉 = 2×−1 + 3×5 = 13

<math>A:B = \sum_{i,j} A_{ij}B_{ij}</math>

inner product of
linear algebra
tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,2} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 4, 6, 8}}
tensor product of
linear algebra
*
convolution f * g means the convolution of f and g. <math>(f * g )(t) = \int f(\tau) g(t - \tau)\, d\tau</math>
convolution, convoluted with
functional analysis
<math>\bar{x}</math>
mean <math>\bar{x}</math> (often read as "x bar") is the mean (average value of <math>x_i</math>). <math>x = \{1,2,3,4,5\}; \bar{x} = 3</math>.
overbar, … bar
statistics
<math> \overline{z} </math>
complex conjugate <math> \overline{z} </math> is the complex conjugate of z. <math> \overline{3+4i} = 3-4i </math>
conjugate
complex numbers
<math>\triangleq</math>
delta equal to <math>\triangleq</math> means equal by definition. When <math>\triangleq</math> is used, equality is not true generally, but rather equality is true under certain assumptions that are taken in context. Some writers prefer ≡. <math>p(x_1,x_2,...,x_n) \triangleq \prod_{i=1}^n p(x_i | x_{\pi_i})</math>.
equal by definition
everywhere
posted on 2007-10-28 04:12 姚明 閱讀(1398) 評論(1)  編輯 收藏 引用 所屬分類: 高等數學

FeedBack:
# re: 數學符號表(3) 2007-11-26 12:53 蘆婷婷
∮中文 ,算是怎么寫來著?  回復  更多評論
  
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              一区二区高清在线观看| 一区免费在线| 欧美日韩视频免费播放| 欧美激情亚洲另类| 影音先锋亚洲电影| 久久久免费av| 小嫩嫩精品导航| 国产精品家教| 在线亚洲国产精品网站| 亚洲国产欧美一区二区三区久久| 日韩视频一区二区三区在线播放| 免费美女久久99| 亚洲国产一区二区精品专区| 玖玖综合伊人| 久久久精品日韩欧美| 激情久久久久久久| 美日韩精品视频免费看| 久久精品国产久精国产一老狼| 欧美特黄一区| 一区二区三区不卡视频在线观看 | 久久网站免费| 欧美日韩黄色大片| 亚洲美女福利视频网站| 亚洲第一天堂av| 免费观看在线综合| 亚洲人成亚洲人成在线观看| 最新高清无码专区| 欧美日韩一区自拍| 亚洲精品1234| 这里只有视频精品| 一区二区三区色| 国产欧美日韩另类一区| 欧美影院在线播放| 久久gogo国模啪啪人体图| 国产亚洲精品bt天堂精选| 老妇喷水一区二区三区| 美女诱惑黄网站一区| av成人免费在线| 亚洲一区二区欧美日韩| 韩国av一区二区三区在线观看| 巨乳诱惑日韩免费av| 欧美区日韩区| 久久精品五月婷婷| 欧美黄在线观看| 久久精品国产77777蜜臀| 浪潮色综合久久天堂| 亚洲一区二区三区免费视频 | 欧美激情按摩| 午夜精品99久久免费| 久久久久久久一区二区| 一区二区不卡在线视频 午夜欧美不卡在| 在线视频欧美精品| 黄色精品免费| 亚洲无人区一区| 最新亚洲激情| 欧美一级久久| 亚洲调教视频在线观看| 久久综合久色欧美综合狠狠| av成人免费在线观看| 久久久综合精品| 亚洲综合成人婷婷小说| 女人香蕉久久**毛片精品| 亚洲欧美综合v| 欧美精品电影在线| 久久久欧美精品| 久久香蕉国产线看观看网| 一区二区三区.www| 欧美午夜欧美| 亚洲电影天堂av| 欧美精品一区二区三区在线播放 | 亚洲最新视频在线| 久久久久中文| 久久精品人人做人人爽| 国产精品成人观看视频国产奇米| 亚洲电影免费观看高清完整版在线观看| 国产精品一区二区黑丝| 日韩一级欧洲| 亚洲美女少妇无套啪啪呻吟| 久久gogo国模裸体人体| 欧美伊人久久久久久久久影院| 欧美激情1区2区| 亚洲激情欧美| 日韩视频在线播放| 欧美高清在线播放| 欧美国产一区二区在线观看 | 亚洲国产另类久久精品| 久久精品二区三区| 久久久久久9999| 国产在线观看精品一区二区三区| 亚洲免费中文| 欧美一区午夜精品| 国产亚洲视频在线| 久久国产精品99久久久久久老狼| 久久精品国产在热久久| 国产欧美日本一区二区三区| 在线亚洲美日韩| 性欧美xxxx视频在线观看| 亚洲精选成人| 欧美黑人在线播放| 亚洲精品午夜精品| 欧美日韩国产小视频在线观看| 亚洲国产精品成人va在线观看| 亚洲欧洲精品一区二区三区波多野1战4| 久久久久女教师免费一区| 免费视频亚洲| 日韩午夜在线观看视频| 欧美视频国产精品| 午夜欧美不卡精品aaaaa| 久久亚洲综合色| 亚洲精品永久免费精品| 欧美日韩亚洲综合在线| 午夜激情久久久| 久久久久免费视频| 亚洲国产精品一区二区第一页| 美女网站在线免费欧美精品| 亚洲毛片播放| 久久精品中文| 亚洲美女在线视频| 国产精品欧美日韩一区| 久久精品国产成人| 亚洲激情成人| 欧美一区二区在线免费播放| 在线播放豆国产99亚洲| 欧美日韩视频在线第一区| 午夜精品婷婷| 亚洲日本欧美日韩高观看| 久久成人免费| 99re6热只有精品免费观看| 欧美日韩中文精品| 久久国产高清| 亚洲精品免费网站| 久久九九热re6这里有精品| 亚洲欧美日韩中文在线制服| 国内精品久久久久久| 欧美黄色成人网| 欧美资源在线观看| 99精品视频免费在线观看| 久久爱www.| 日韩视频免费| 欧美视频不卡中文| 蜜桃av久久久亚洲精品| 亚洲欧美美女| 亚洲国产精品久久人人爱蜜臀| 亚洲欧美国产精品专区久久| 一区视频在线看| 国产视频久久久久| 欧美调教视频| 欧美成人日韩| 久久久久久久97| 亚洲免费中文| 一本色道久久综合精品竹菊| 欧美aⅴ一区二区三区视频| 欧美一区日本一区韩国一区| 日韩亚洲视频在线| 亚洲国产欧美日韩精品| 国产日韩欧美一区在线 | 久久手机免费观看| 亚洲毛片av| 亚洲电影有码| 欧美成人中文| 看片网站欧美日韩| 久久久www成人免费无遮挡大片 | 牛人盗摄一区二区三区视频| 亚洲欧美成aⅴ人在线观看| 亚洲看片一区| 亚洲精品一区中文| 亚洲片区在线| 亚洲人成免费| 亚洲国产婷婷| 最新亚洲激情| 亚洲精选在线观看| 亚洲日本黄色| 日韩写真在线| 亚洲视频第一页| 亚洲一二三区在线| 亚洲自拍三区| 午夜在线观看欧美| 一本一本久久a久久精品综合妖精| 亚洲韩日在线| 亚洲最快最全在线视频| 亚洲视频观看| 午夜免费日韩视频| 久久精品国产清高在天天线| 久久国产天堂福利天堂| 久久一日本道色综合久久| 免费视频亚洲| 亚洲人午夜精品免费| 91久久精品国产91久久| 日韩视频第一页| 亚洲欧美日韩另类| 久久精品国产免费观看| 鲁大师影院一区二区三区| 欧美mv日韩mv国产网站| 欧美激情第3页| 国产精品每日更新在线播放网址| 国产精一区二区三区| 一区精品在线| 亚洲视频一区二区| 久久久久国色av免费观看性色| 欧美国产视频在线观看|