• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            統(tǒng)計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Mahalanobis distance 馬氏距離

              In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

             

            Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

            D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

            Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

             d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

            If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

             d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

            where σi is the standard deviation of the xi over the sample set.

            Intuitive explanation

            Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

            However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

            This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

            The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

            Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

            Relationship to leverage

            Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

            Mahalanobis distance = (N ? 1)(h ? 1/N).

            Applications

            Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

            Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

            In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

            Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

            Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

             

            多維高斯分布的指數(shù)項!做分類聚類的時候用的比較多

            posted on 2010-10-12 09:47 Sosi 閱讀(2333) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統(tǒng)計系統(tǒng)
            亚洲色婷婷综合久久| 99蜜桃臀久久久欧美精品网站| 久久精品国产乱子伦| 人人狠狠综合久久88成人| 成人综合伊人五月婷久久| 成人精品一区二区久久久| 人妻无码精品久久亚瑟影视| 亚洲国产精品无码久久98| 久久不射电影网| 18禁黄久久久AAA片| 99久久精品国产麻豆| 老司机午夜网站国内精品久久久久久久久 | 久久AⅤ人妻少妇嫩草影院| 欧美国产成人久久精品| 99久久国语露脸精品国产| 深夜久久AAAAA级毛片免费看| 国产精品久久亚洲不卡动漫| 亚洲AV伊人久久青青草原| 天天综合久久久网| 久久夜色精品国产噜噜麻豆| 久久这里有精品视频| 91精品国产91久久久久久蜜臀| 久久天天躁狠狠躁夜夜躁2O2O| 亚洲另类欧美综合久久图片区| 久久电影网一区| 久久精品蜜芽亚洲国产AV| 亚洲色欲久久久久综合网| 精品久久久久久久中文字幕| 久久综合九色综合精品| 91精品国产综合久久婷婷| 久久亚洲精品中文字幕| 一级A毛片免费观看久久精品| 久久久亚洲精品蜜桃臀| 99久久免费只有精品国产| 精品久久久久久国产| www.久久精品| 国产精品一区二区久久不卡| 精品久久久久久中文字幕人妻最新| 囯产极品美女高潮无套久久久| 国产毛片欧美毛片久久久| 亚洲中文字幕无码一久久区|