青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Mahalanobis distance 馬氏距離

  In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

 

Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

 d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

where σi is the standard deviation of the xi over the sample set.

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

Relationship to leverage

Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

Mahalanobis distance = (N ? 1)(h ? 1/N).

Applications

Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

 

多維高斯分布的指數項!做分類聚類的時候用的比較多

posted on 2010-10-12 09:47 Sosi 閱讀(2340) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产夜色精品一区二区av| 亚洲裸体视频| 亚洲午夜精品视频| 最新日韩av| 99精品久久久| 亚洲一区二区三区精品动漫| 亚洲精选在线| 一区二区三区视频观看| 亚洲视频免费观看| 性欧美精品高清| 久久九九久久九九| 欧美α欧美αv大片| 欧美成人福利视频| 亚洲精一区二区三区| 亚洲无线观看| 美日韩丰满少妇在线观看| 欧美精品日日鲁夜夜添| 国产精品qvod| 亚洲国产精品悠悠久久琪琪| 亚洲深爱激情| 久久综合久久综合这里只有精品| 欧美激情区在线播放| 一区二区毛片| 久久在线播放| 国产精品成人一区二区三区夜夜夜| 国产日韩欧美不卡在线| 亚洲三级免费| 久久精品国产一区二区电影| 亚洲成色精品| 亚洲欧洲精品一区二区三区不卡| 亚洲综合清纯丝袜自拍| 欧美成人xxx| 国产一区二区三区无遮挡| 一区二区三区不卡视频在线观看| 久久久一二三| 亚洲一区二区三区在线观看视频| 牛牛国产精品| 国产伊人精品| 欧美亚洲自偷自偷| 亚洲精品孕妇| 久久亚洲视频| 国产欧美一区二区三区久久人妖| 99热免费精品在线观看| 久久亚洲精品网站| 亚洲专区免费| 欧美视频三区在线播放| 91久久久久久久久| 麻豆成人综合网| 欧美资源在线观看| 国产欧美一区二区精品秋霞影院 | 国产欧美精品国产国产专区| 亚洲精品日韩在线观看| 久久免费视频这里只有精品| 一区二区动漫| 99热免费精品在线观看| 日韩视频精品在线| 欧美成人免费在线观看| 久久精品日产第一区二区三区 | 黄页网站一区| 欧美尤物巨大精品爽| 亚洲素人一区二区| 国产精品久久久久7777婷婷| 中文有码久久| 一区二区高清在线| 国产精品普通话对白| 午夜精品福利一区二区蜜股av| 一本色道婷婷久久欧美| 欧美视频在线观看一区二区| 在线亚洲一区| 亚洲一区精品在线| 国产一区二区电影在线观看| 久久久www| 久久人人精品| 亚洲九九九在线观看| 亚洲欧洲日本专区| 国产精品白丝av嫩草影院| 亚洲一区二区精品视频| 亚洲一区三区电影在线观看| 国产精品一区=区| 久久蜜桃香蕉精品一区二区三区| 久久精选视频| 日韩视频在线一区二区三区| 99精品国产在热久久| 国产精品九九| 久久婷婷一区| 欧美成人亚洲| 午夜精品久久久久久99热软件| 欧美在现视频| 9久re热视频在线精品| 亚洲一区二区高清视频| 在线看日韩欧美| 日韩西西人体444www| 国产欧美午夜| 亚洲精选视频免费看| 国产一区二区三区在线免费观看 | 久久嫩草精品久久久久| 免费观看在线综合色| 亚洲一区二区三区三| 欧美在线视频一区| 日韩午夜激情| 欧美在线亚洲一区| 亚洲精品在线一区二区| 亚洲欧美久久| 日韩午夜精品| 久久麻豆一区二区| 亚洲男人第一网站| 欧美+日本+国产+在线a∨观看| 亚洲欧美中日韩| 欧美激情麻豆| 久久夜色精品国产亚洲aⅴ| 欧美日韩免费区域视频在线观看| 久久激情五月婷婷| 欧美日韩一区不卡| 亚洲国产成人久久| 免费成人网www| 国产精品一区二区三区四区五区 | 欧美中文日韩| 欧美日韩午夜剧场| 欧美激情精品久久久久久大尺度| 国产精品久久久久免费a∨大胸 | 亚洲无玛一区| 嫩草国产精品入口| 久久在线免费观看| 亚洲一区二区高清视频| av成人免费在线| 麻豆乱码国产一区二区三区| 欧美在线视频二区| 国产精品久久久久久影视| 91久久极品少妇xxxxⅹ软件| 很黄很黄激情成人| 午夜精品成人在线视频| 亚洲午夜精品| 欧美日韩不卡视频| 亚洲三级影院| 亚洲精品日韩久久| 欧美xxxx在线观看| 欧美国产综合一区二区| 在线成人h网| 久久人人97超碰人人澡爱香蕉| 久久久久国产精品厨房| 国产乱码精品一区二区三| 一区二区三区欧美激情| 亚洲欧美制服中文字幕| 国产精品系列在线播放| 亚洲影院在线| 欧美影院久久久| 国外精品视频| 老司机免费视频一区二区| 久久综合综合久久综合| 亚洲国产高清在线| 久久综合网络一区二区| 亚洲国产精品成人一区二区| 亚洲人成网站在线观看播放| 欧美激情亚洲| 一本久久精品一区二区| 午夜精品久久久久久久久久久久久 | 国产一区美女| 老司机久久99久久精品播放免费 | 亚洲区一区二区三区| 亚洲精品久久嫩草网站秘色| 欧美国产日韩免费| 99精品国产高清一区二区| 欧美中在线观看| 在线免费日韩片| 欧美日本不卡视频| 亚洲性夜色噜噜噜7777| 久久综合九色综合欧美就去吻| 亚洲国产综合在线| 欧美人与性动交cc0o| 亚洲中字黄色| 欧美成年人网站| 亚洲午夜国产成人av电影男同| 午夜精品久久久久久久男人的天堂 | 欧美专区在线观看| 欧美成人精品影院| 亚洲素人一区二区| 国产午夜精品理论片a级大结局 | 亚洲福利电影| 欧美日韩在线看| 午夜在线视频观看日韩17c| 免费成人性网站| 亚洲一区二区在线视频| 黄色精品免费| 国产精品黄色在线观看| 欧美主播一区二区三区| 亚洲精品视频在线观看免费| 久久婷婷国产麻豆91天堂| 一区二区国产在线观看| 狠狠色丁香久久婷婷综合丁香| 欧美电影电视剧在线观看| 亚洲欧美视频一区二区三区| 亚洲激情av在线| 久久久久久久久伊人| 亚洲特黄一级片| 91久久极品少妇xxxxⅹ软件| 国产精品网站视频| 欧美日韩国产一区二区三区地区| 久久精品国产91精品亚洲| 一区二区三区久久精品| 91久久午夜|