青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2025年9月>
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011

統(tǒng)計(jì)

  • 隨筆 - 182
  • 文章 - 1
  • 評(píng)論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評(píng)論

閱讀排行榜

評(píng)論排行榜

Mahalanobis distance 馬氏距離

  In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

 

Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

 d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

where σi is the standard deviation of the xi over the sample set.

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

Relationship to leverage

Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

Mahalanobis distance = (N ? 1)(h ? 1/N).

Applications

Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

 

多維高斯分布的指數(shù)項(xiàng)!做分類聚類的時(shí)候用的比較多

posted on 2010-10-12 09:47 Sosi 閱讀(2340) 評(píng)論(0)  編輯 收藏 引用 所屬分類: Taps in Research

統(tǒng)計(jì)系統(tǒng)
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲影院在线观看| 国产精品久久一卡二卡| 亚洲精品日韩欧美| 亚洲国产欧美日韩| 欧美电影免费观看高清完整版| 免费在线欧美黄色| 亚洲人久久久| 亚洲专区国产精品| 久久久午夜精品| 欧美另类视频在线| 国产欧美一区二区三区久久人妖| 国产一区二区三区久久 | 亚洲欧洲精品成人久久奇米网 | 欧美日韩一二三区| 国产美女扒开尿口久久久| 在线日本欧美| 亚洲欧美日韩精品久久| 免费人成精品欧美精品| 99精品欧美一区| 久久米奇亚洲| 国产精品二区影院| 亚洲国产精品va在线观看黑人| 亚洲天堂av在线免费观看| 久久精品免费电影| 亚洲激情成人在线| 欧美专区福利在线| 狠狠干狠狠久久| 亚洲欧洲日韩综合二区| 亚洲一区二区精品| 久久综合国产精品| 亚洲桃花岛网站| 欧美精品免费看| 尤物网精品视频| 欧美一二三区精品| 亚洲日韩欧美一区二区在线| 欧美综合77777色婷婷| 欧美四级在线| 亚洲另类黄色| 欧美freesex交免费视频| 亚洲欧美日韩系列| 欧美日韩免费观看一区=区三区| 在线观看欧美激情| 久久免费99精品久久久久久| 亚洲一区二区动漫| 国产精品爱啪在线线免费观看| 亚洲精品久久久久久久久久久久| 久久五月天婷婷| 性欧美videos另类喷潮| 国产精品青草综合久久久久99| 一本色道久久88亚洲综合88| 欧美高清视频| 久久一区视频| 亚洲国产一成人久久精品| 欧美一区二区成人6969| 亚洲一级在线观看| 国产精品免费观看在线| 在线一区免费观看| 99这里只有久久精品视频| 欧美黄色小视频| 亚洲精品国产日韩| 亚洲激情av| 欧美日韩天天操| 亚洲无线一线二线三线区别av| 亚洲精选视频在线| 欧美视频官网| 欧美一级网站| 久久se精品一区精品二区| 国产有码在线一区二区视频| 久久精品国产久精国产爱| 欧美一区二区视频免费观看 | 欧美三级在线视频| 亚洲女爱视频在线| 性欧美videos另类喷潮| 国产综合精品一区| 开心色5月久久精品| 久久只精品国产| 亚洲美女视频在线观看| 在线视频日韩精品| 国产一区二区三区久久 | 欧美中文在线观看| 性欧美大战久久久久久久久| 韩日欧美一区二区三区| 欧美国产极速在线| 欧美日韩国产综合在线| 欧美在线日韩| 模特精品在线| 亚洲一品av免费观看| 欧美一区二区三区另类| 亚洲国产欧美一区| 亚洲视频在线观看三级| 国内精品久久久久伊人av| 亚洲激情精品| 国产欧美精品在线| 亚洲品质自拍| 国模叶桐国产精品一区| 亚洲日本中文字幕| 国产一区二区福利| aⅴ色国产欧美| 在线观看91久久久久久| 亚洲视频在线一区| 亚洲精品少妇网址| 午夜一级久久| 中文av一区特黄| 久久男女视频| 欧美亚洲在线| 欧美日韩一区二区三区在线 | 欧美激情综合五月色丁香| 亚洲在线免费视频| 麻豆freexxxx性91精品| 午夜精品久久久久久99热软件| 蜜臀av一级做a爰片久久| 欧美专区在线观看一区| 欧美视频一区二区三区| 亚洲国产成人精品久久| 狠狠色狠色综合曰曰| 亚洲一区中文字幕在线观看| 一本久道久久综合中文字幕| 久久久久久日产精品| 久久福利毛片| 国产精品婷婷午夜在线观看| 一本大道久久a久久综合婷婷| 亚洲精品在线观| 欧美成人第一页| 欧美激情一区三区| 亚洲欧洲一区二区在线播放| 久久久美女艺术照精彩视频福利播放| 亚洲综合日韩在线| 欧美亚洲不卡| 亚洲午夜视频在线| 亚洲欧美高清| 国产精品一区2区| 亚洲深夜福利| 欧美亚洲自偷自偷| 国产精品入口夜色视频大尺度| 亚洲精品一区二区三区99| 日韩一区二区精品视频| 欧美日韩国产黄| 国产精品自拍网站| av成人福利| 亚洲人成人一区二区在线观看| 久久亚洲一区| 欧美激情第3页| 夜夜躁日日躁狠狠久久88av| 欧美人交a欧美精品| 一本久久青青| 欧美一区午夜精品| 国产亚洲精品一区二区| 久久狠狠一本精品综合网| 美日韩精品免费观看视频| 在线欧美视频| 欧美日韩不卡| 亚洲免费在线视频| 欧美中文在线视频| 在线观看日韩一区| 欧美福利电影网| 一区二区三区不卡视频在线观看| 亚洲综合色在线| 黑人一区二区| 欧美成人精品福利| 一区二区三区精品国产| 久久久www成人免费无遮挡大片| 尤物精品国产第一福利三区| 猛男gaygay欧美视频| 亚洲毛片一区| 久久国产一区| 一本一本久久a久久精品牛牛影视| 欧美性淫爽ww久久久久无| 久久久精品性| 亚洲精品一区二区三区婷婷月| 先锋影音网一区二区| 加勒比av一区二区| 欧美视频在线观看免费网址| 久久九九99| 中日韩美女免费视频网址在线观看| 久久精品亚洲精品| 99视频热这里只有精品免费| 国产欧美精品日韩精品| 欧美成人一区二免费视频软件| 亚洲一区二区免费在线| 亚洲高清免费视频| 久久久久高清| 亚洲免费小视频| 亚洲日本免费| 在线观看欧美亚洲| 国产欧美日韩| 欧美视频一区二区| 欧美freesex交免费视频| 亚洲欧洲av一区二区| 日韩视频在线观看一区二区| 美女主播一区| 久久天天躁夜夜躁狠狠躁2022| av成人免费| 亚洲国产精品福利| 伊人精品在线| 国内精品久久久久影院色| 国产伦精品一区二区| 欧美日韩123| 欧美巨乳波霸| 欧美精品激情| 欧美激情一级片一区二区|