• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1178 Camelot Floyd算法+枚舉

            Description

            Centuries ago, King Arthur and the Knights of the Round Table used to meet every year on New Year's Day to celebrate their fellowship. In remembrance of these events, we consider a board game for one player, on which one king and several knight pieces are placed at random on distinct squares.
            The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board.

            During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely.
            The player抯 goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move.

            Write a program to compute the minimum number of moves the player must perform to produce the gathering.

            Input

            Your program is to read from standard input. The input contains the initial board configuration, encoded as a character string. The string contains a sequence of up to 64 distinct board positions, being the first one the position of the king and the remaining ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate.

            0 <= number of knights <= 63

            Output

            Your program is to write to standard output. The output must contain a single line with an integer indicating the minimum number of moves the player must perform to produce the gathering.

            Sample Input

            D4A3A8H1H8

            Sample Output

            10

            Source


                棋盤上有1個(gè)國王和若干個(gè)騎士,要把國王和每個(gè)騎士移動(dòng)到同一個(gè)格子內(nèi),問需要移動(dòng)的最小步數(shù)是多少。如果國王和騎士走到同一個(gè)格子里,可以由騎士帶著國王一起移動(dòng)。
                枚舉棋盤上的64個(gè)點(diǎn)作為終點(diǎn),對(duì)于每一個(gè)假定的終點(diǎn),再枚舉這64個(gè)點(diǎn)作為國王和某個(gè)騎士相遇的點(diǎn),最后求出需要移動(dòng)的最小步數(shù)。其中根據(jù)騎士和國王移動(dòng)的特點(diǎn)可以預(yù)處理出從1個(gè)點(diǎn)到另外1個(gè)點(diǎn)所需的最小移動(dòng)次數(shù),也可用搜索。
            #include <iostream>
            using namespace std;

            const int inf = 100000;
            char str[150];
            int k[64],king[64][64],knight[64][64];
            int move1[8][2]={-1,-1,-1,0,-1,1,0,1,1,1,1,0,1,-1,0,-1};
            int move2[8][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2};

            void init(){
                
            int i,j,x,y,tx,ty;
                
            for(i=0;i<64;i++)
                    
            for(j=0;j<64;j++)
                        
            if(i==j) king[i][j]=knight[i][j]=0;
                        
            else king[i][j]=knight[i][j]=inf;
                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move1[j][0],ty=y+move1[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            king[i][
            8*tx+ty]=1;
                    }

                }

                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move2[j][0],ty=y+move2[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            knight[i][
            8*tx+ty]=1;
                    }

                }

            }

            void floyd1(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(king[i][k]+king[k][j]<king[i][j])
                                king[i][j]
            =king[i][k]+king[k][j];
            }

            void floyd2(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(knight[i][k]+knight[k][j]<knight[i][j])
                                knight[i][j]
            =knight[i][k]+knight[k][j];
            }

            int main(){
                
            int i,j,l,cnt,pos,sum,ans,len,t1,t2;
                init();
                floyd1();
                floyd2();
                
            while(scanf("%s",str)!=EOF){
                    len
            =strlen(str);
                    pos
            =(str[0]-'A')+(str[1]-'1')*8;
                    cnt
            =(len-2)/2;
                    
            if(cnt==0){
                        printf(
            "0\n");
                        
            continue;
                    }

                    
            for(i=0,j=2;i<cnt;i++,j+=2)
                        k[i]
            =(str[j]-'A')+(str[j+1]-'1')*8;
                    
            for(ans=inf,i=0;i<64;i++){
                        
            for(sum=l=0;l<cnt;l++)
                            sum
            +=knight[k[l]][i];
                        
            for(j=0;j<64;j++){
                            t1
            =king[pos][j];
                            
            for(t2=inf,l=0;l<cnt;l++)
                                t2
            =min(t2,knight[k[l]][j]+knight[j][i]-knight[k[l]][i]);
                            ans
            =min(ans,sum+t1+t2);
                        }

                    }

                    printf(
            "%d\n",ans);
                }

                
            return 0;
            }

            posted on 2009-07-02 23:57 極限定律 閱讀(2340) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            国内精品伊人久久久久影院对白 | 色婷婷久久综合中文久久蜜桃av | 伊人久久大香线蕉亚洲五月天| 偷窥少妇久久久久久久久| 久久综合九色综合网站 | 香蕉久久久久久狠狠色| 久久精品欧美日韩精品| 国产免费久久精品丫丫| 久久人人爽人人人人片av| 久久精品99久久香蕉国产色戒| 久久婷婷久久一区二区三区| 久久久午夜精品福利内容| 潮喷大喷水系列无码久久精品| 久久不见久久见免费影院www日本| 伊人久久大香线蕉av不卡| 99久久国产热无码精品免费久久久久| 成人午夜精品无码区久久 | 久久精品欧美日韩精品| 久久精品中文字幕第23页| 国产精品久久一区二区三区| 久久精品国产亚洲AV香蕉| 精品国产青草久久久久福利| 久久久久无码精品国产不卡| 久久九九久精品国产免费直播| 久久久久久亚洲精品不卡 | 国产精品对白刺激久久久| 人妻无码αv中文字幕久久琪琪布| 久久亚洲2019中文字幕| 久久久久国产精品| 免费观看成人久久网免费观看| 久久亚洲私人国产精品vA| 国产A三级久久精品| 亚洲国产精品18久久久久久| 波多野结衣AV无码久久一区| 香蕉久久久久久狠狠色| 精品久久久无码21p发布| 精品国产青草久久久久福利| 久久久无码一区二区三区| 精品久久久久久无码专区不卡| 2022年国产精品久久久久| 久久精品国产亚洲av高清漫画|