• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1178 Camelot Floyd算法+枚舉

            Description

            Centuries ago, King Arthur and the Knights of the Round Table used to meet every year on New Year's Day to celebrate their fellowship. In remembrance of these events, we consider a board game for one player, on which one king and several knight pieces are placed at random on distinct squares.
            The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board.

            During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely.
            The player抯 goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move.

            Write a program to compute the minimum number of moves the player must perform to produce the gathering.

            Input

            Your program is to read from standard input. The input contains the initial board configuration, encoded as a character string. The string contains a sequence of up to 64 distinct board positions, being the first one the position of the king and the remaining ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate.

            0 <= number of knights <= 63

            Output

            Your program is to write to standard output. The output must contain a single line with an integer indicating the minimum number of moves the player must perform to produce the gathering.

            Sample Input

            D4A3A8H1H8

            Sample Output

            10

            Source


                棋盤上有1個(gè)國王和若干個(gè)騎士,要把國王和每個(gè)騎士移動(dòng)到同一個(gè)格子內(nèi),問需要移動(dòng)的最小步數(shù)是多少。如果國王和騎士走到同一個(gè)格子里,可以由騎士帶著國王一起移動(dòng)。
                枚舉棋盤上的64個(gè)點(diǎn)作為終點(diǎn),對(duì)于每一個(gè)假定的終點(diǎn),再枚舉這64個(gè)點(diǎn)作為國王和某個(gè)騎士相遇的點(diǎn),最后求出需要移動(dòng)的最小步數(shù)。其中根據(jù)騎士和國王移動(dòng)的特點(diǎn)可以預(yù)處理出從1個(gè)點(diǎn)到另外1個(gè)點(diǎn)所需的最小移動(dòng)次數(shù),也可用搜索。
            #include <iostream>
            using namespace std;

            const int inf = 100000;
            char str[150];
            int k[64],king[64][64],knight[64][64];
            int move1[8][2]={-1,-1,-1,0,-1,1,0,1,1,1,1,0,1,-1,0,-1};
            int move2[8][2]={-1,-2,-2,-1,-2,1,-1,2,1,2,2,1,2,-1,1,-2};

            void init(){
                
            int i,j,x,y,tx,ty;
                
            for(i=0;i<64;i++)
                    
            for(j=0;j<64;j++)
                        
            if(i==j) king[i][j]=knight[i][j]=0;
                        
            else king[i][j]=knight[i][j]=inf;
                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move1[j][0],ty=y+move1[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            king[i][
            8*tx+ty]=1;
                    }

                }

                
            for(i=0;i<64;i++){
                    x
            =i/8,y=i%8;
                    
            for(j=0;j<8;j++){
                        tx
            =x+move2[j][0],ty=y+move2[j][1];
                        
            if(tx>=0 && ty>=0 && tx<8 && ty<8)
                            knight[i][
            8*tx+ty]=1;
                    }

                }

            }

            void floyd1(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(king[i][k]+king[k][j]<king[i][j])
                                king[i][j]
            =king[i][k]+king[k][j];
            }

            void floyd2(){
                
            int i,j,k;
                
            for(k=0;k<64;k++)
                    
            for(i=0;i<64;i++)
                        
            for(j=0;j<64;j++)
                            
            if(knight[i][k]+knight[k][j]<knight[i][j])
                                knight[i][j]
            =knight[i][k]+knight[k][j];
            }

            int main(){
                
            int i,j,l,cnt,pos,sum,ans,len,t1,t2;
                init();
                floyd1();
                floyd2();
                
            while(scanf("%s",str)!=EOF){
                    len
            =strlen(str);
                    pos
            =(str[0]-'A')+(str[1]-'1')*8;
                    cnt
            =(len-2)/2;
                    
            if(cnt==0){
                        printf(
            "0\n");
                        
            continue;
                    }

                    
            for(i=0,j=2;i<cnt;i++,j+=2)
                        k[i]
            =(str[j]-'A')+(str[j+1]-'1')*8;
                    
            for(ans=inf,i=0;i<64;i++){
                        
            for(sum=l=0;l<cnt;l++)
                            sum
            +=knight[k[l]][i];
                        
            for(j=0;j<64;j++){
                            t1
            =king[pos][j];
                            
            for(t2=inf,l=0;l<cnt;l++)
                                t2
            =min(t2,knight[k[l]][j]+knight[j][i]-knight[k[l]][i]);
                            ans
            =min(ans,sum+t1+t2);
                        }

                    }

                    printf(
            "%d\n",ans);
                }

                
            return 0;
            }

            posted on 2009-07-02 23:57 極限定律 閱讀(2340) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            精品久久久久久国产91| 久久精品国产99国产精品澳门| 久久国产精品久久| 久久久久久国产a免费观看不卡| 精品无码久久久久久久久久| 伊人久久亚洲综合影院| 99久久无色码中文字幕人妻| 色88久久久久高潮综合影院| 99久久精品国产一区二区三区 | 欧美亚洲另类久久综合| 亚洲精品乱码久久久久66| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 久久噜噜久久久精品66| 久久精品无码专区免费青青| 国产免费久久精品丫丫| 久久精品国产免费观看| 日本高清无卡码一区二区久久| 久久美女人爽女人爽| 久久精品人人做人人爽电影| 99久久亚洲综合精品成人| 99久久国产精品免费一区二区| 精品久久久久国产免费| 国产婷婷成人久久Av免费高清| 亚洲欧美日韩中文久久| 久久国产成人午夜aⅴ影院| 69国产成人综合久久精品| 国产亚洲婷婷香蕉久久精品| 亚洲精品无码久久不卡| 精品久久国产一区二区三区香蕉| 国内精品久久久久影院优 | 少妇精品久久久一区二区三区| 久久夜色撩人精品国产小说| 国产精品VIDEOSSEX久久发布| 久久国产乱子伦精品免费强| 久久精品欧美日韩精品| 久久久精品国产sm调教网站| 亚洲午夜久久久影院| 人妻少妇久久中文字幕| 久久国产高潮流白浆免费观看| 日韩精品久久无码人妻中文字幕| 97久久国产露脸精品国产|