• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃

            Description

            In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury.
            Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties.
            We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J
            and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution.
            For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties.
            You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.

            Input

            The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members.
            These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next.
            The file ends with a round that has n = m = 0.

            Output

            For each round output a line containing the number of the jury selection round ('Jury #1', 'Jury #2', etc.).
            On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number.
            Output an empty line after each test case.

            Sample Input

            4 2
            1 2
            2 3
            4 1
            6 2
            0 0 

            Sample Output

            Jury #1
            Best jury has value 6 for prosecution and value 4 for defence:
            2 3 

            Hint

            If your solution is based on an inefficient algorithm, it may not execute in the allotted time.

            Source

             

                在遙遠(yuǎn)的國(guó)家佛羅布尼亞,嫌犯是否有罪,須由陪審團(tuán)決定。陪審團(tuán)是由法官?gòu)墓娭刑暨x的。先隨機(jī)挑選n 個(gè)人作為陪審團(tuán)的候選人,然后再?gòu)倪@n 個(gè)人中選m 人組成陪審團(tuán)。選m 人的辦法是:控方和辯方會(huì)根據(jù)對(duì)候選人的喜歡程度,給所有候選人打分,分值從0 到20。為了公平起見(jiàn),法官選出陪審團(tuán)的原則是:選出的m 個(gè)人,必須滿(mǎn)足辯方總分和控方總分的差的絕對(duì)值最小。如果有多種選擇方案的辯方總分和控方總分的之差的絕對(duì)值相同,那么選辯控雙方總分之和最大的方案即可。最終選出的方案稱(chēng)為陪審團(tuán)方案。
                為敘述問(wèn)題方便,現(xiàn)將任一選擇方案中,辯方總分和控方總分之差簡(jiǎn)稱(chēng)為“辯控差”,辯方總分和控方總分之和稱(chēng)為“辯控和”。第i 個(gè)候選人的辯方總分和控方總分之差記為V(i),辯方總分和控方總分之和記為S(i)。現(xiàn)用f(j, k)表示,取j 個(gè)候選人,使其辯控差為k 的所有方案中,辯控和最大的那個(gè)方案(該方案稱(chēng)為“方案f(j, k)”)的辯控和。并且,我們還規(guī)定,如果沒(méi)法選j 個(gè)人,使其辯控差為k,那么f(j, k)的值就為-1,也稱(chēng)方案f(j, k)不可行。本題是要求選出m 個(gè)人,那么,如果對(duì)k 的所有可能的取值,求出了所有的f(m, k) (-20×m≤ k ≤ 20×m),那么陪審團(tuán)方案自然就很容易找到了。
                問(wèn)題的關(guān)鍵是建立遞推關(guān)系。需要從哪些已知條件出發(fā),才能求出f(j, k)呢?顯然,方案f(j, k)是由某個(gè)可行的方案f(j-1, x)( -20×m ≤ x ≤ 20×m)演化而來(lái)的。可行方案f(j-1, x)能演化成方案f(j, k)的必要條件是:存在某個(gè)候選人i,i 在方案f(j-1, x)中沒(méi)有被選上,且x+V(i) = k。在所有滿(mǎn)足該必要條件的f(j-1, x)中,選出 f(j-1, x) + S(i) 的值最大的那個(gè),那么方案f(j-1, x)再加上候選人i,就演變成了方案 f(j, k)。這中間需要將一個(gè)方案都選了哪些人都記錄下來(lái)。不妨將方案f(j, k)中最后選的那個(gè)候選人的編號(hào),記在二維數(shù)組的元素path[j][k]中。那么方案f(j, k)的倒數(shù)第二個(gè)人選的編號(hào),就是path[j-1][k-V[path[j][k]]。假定最后算出了解方案的辯控差是k,那么從path[m][k]出發(fā),就能順藤摸瓜一步步求出所有被選中的候選人。初始條件,只能確定f(0, 0) = 0。由此出發(fā),一步步自底向上遞推,就能求出所有的可行方案f(m, k)( -20×m ≤ k ≤ 20×m)。實(shí)際解題的時(shí)候,會(huì)用一個(gè)二維數(shù)組f 來(lái)存放f(j, k)的值。而且,由于題目中辯控差的值k 可以為負(fù)數(shù),而程序中數(shù)租下標(biāo)不能為負(fù)數(shù),所以,在程序中不妨將辯控差的值都加上400,以免下標(biāo)為負(fù)數(shù)導(dǎo)致出錯(cuò),即題目描述中,如果辯控差為0,則在程序中辯控差為400。

            #include <iostream>
            using namespace std;

            int p[201],d[201],result[21];
            int dp[21][801],path[21][801];

            int cmp(const void *a,const void *b){
                
            return *(int *)a-*(int *)b;
            }

            bool select(int a,int b,int i){
                
            while(a>0 && path[a][b]!=i){
                    b
            -=p[path[a][b]]-d[path[a][b]];
                    a
            --;
                }

                
            return (a!=0)?true:false;
            }

            int main(){
                
            int i,j,k,a,b,n,m,origin,ca=1;
                
            while(scanf("%d %d",&n,&m),n||m){
                    
            for(i=1;i<=n;i++)
                        scanf(
            "%d %d",p+i,d+i);
                    memset(dp,
            -1,sizeof(dp));
                    memset(path,
            0,sizeof(path));
                    origin
            =m*20;
                    
            for(dp[0][origin]=j=0;j<m;j++)
                        
            for(k=0;k<=origin*2;k++)
                            
            if(dp[j][k]>=0){
                                
            for(i=1;i<=n;i++)
                                    
            if(dp[j+1][k+p[i]-d[i]]<dp[j][k]+p[i]+d[i]){
                                        a
            =j,b=k;
                                        
            if(!select(a,b,i)){
                                            dp[j
            +1][k+p[i]-d[i]]=dp[j][k]+p[i]+d[i];
                                            path[j
            +1][k+p[i]-d[i]]=i;
                                        }

                                    }

                            }

                    
            for(i=origin,j=0;dp[m][i+j]<0 && dp[m][i-j]<0;j++);
                    k
            =dp[m][i+j]>dp[m][i-j]?i+j:i-j;
                    printf(
            "Jury #%d\n",ca++);
                    printf(
            "Best jury has value %d for prosecution and value %d for defence:\n",(dp[m][k]+k-origin)/2, (dp[m][k]-k+origin)/2);
                    
            for(i=1;i<=m;i++){
                        result[i]
            =path[m-i+1][k];
                        k
            -=p[result[i]]-d[result[i]];
                    }

                    qsort(result
            +1,m,sizeof(int),cmp);
                    
            for(i=1;i<=m;i++)
                        printf(
            " %d",result[i]);
                    printf(
            "\n");
                    printf(
            "\n");
                }

                
            return 0;
            }


             

            posted on 2009-06-23 17:08 極限定律 閱讀(4776) 評(píng)論(6)  編輯 收藏 引用 所屬分類(lèi): ACM/ICPC

            評(píng)論

            # re: POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃 2009-09-09 14:03 boa

            不知道為什么這種方法uva和tju上是wa啊?難道是這兩個(gè)網(wǎng)站不判special judge?  回復(fù)  更多評(píng)論   

            # re: POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃 2010-05-06 23:03 Cre_nws

            麻煩問(wèn)一下" if(dp[j+1][k+p[i]-d[i]]<dp[j][k]+p[i]+d[i])"當(dāng)k=0時(shí),p[i]-d[i]如果為負(fù)值,那么會(huì)不會(huì)產(chǎn)生運(yùn)行時(shí)錯(cuò)誤啊?!謝啦!  回復(fù)  更多評(píng)論   

            # re: POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃 2010-08-05 22:33 cxb

            @Cre_nws
            k應(yīng)該不會(huì)取到0,因?yàn)槿〉?就意味著“辯控差”為負(fù)的最大,即已經(jīng)到了j=m-1次循環(huán),并且所有的陪審員都是p:0 s:20,此時(shí)k=0,并且整個(gè)循環(huán)已經(jīng)結(jié)束了,這就是板主為何要將origin=m*20的原因之所在。有不對(duì)的地方,請(qǐng)指正~  回復(fù)  更多評(píng)論   

            # re: POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃 2010-09-03 14:58 tel

            效率不是很高啊  回復(fù)  更多評(píng)論   

            # re: POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃 2010-10-14 19:59 songtianyi

            效率已經(jīng)不錯(cuò)了  回復(fù)  更多評(píng)論   

            # re: POJ 1015 Jury Compromise 動(dòng)態(tài)規(guī)劃 2011-08-05 20:33 asdf

            這個(gè)算法有后效性吧。就是在i的選取上。  回復(fù)  更多評(píng)論   

            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類(lèi)

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            久久午夜无码鲁丝片午夜精品| 久久噜噜久久久精品66| 99久久99久久| 久久福利片| 久久久精品人妻一区二区三区蜜桃| 国产精品久久久久久| 久久久久亚洲AV无码观看| 久久精品国产亚洲网站| 久久精品国产亚洲AV影院| 亚洲综合久久综合激情久久 | 青青热久久综合网伊人| 久久久久亚洲av毛片大| 久久99国产精品久久久 | 久久精品无码一区二区WWW| 久久91精品国产91久久麻豆 | 91精品国产高清久久久久久国产嫩草 | 欧美大香线蕉线伊人久久| 欧美性猛交xxxx免费看久久久| 久久精品国产亚洲av麻豆色欲| 亚洲精品国产第一综合99久久| 国产免费久久精品丫丫| 国产成人久久精品一区二区三区| 久久综合一区二区无码| 精品人妻伦九区久久AAA片69| www久久久天天com| 嫩草伊人久久精品少妇AV| 久久www免费人成看片| 久久毛片一区二区| 一本一本久久a久久精品综合麻豆| 2020最新久久久视精品爱 | 久久影院久久香蕉国产线看观看| segui久久国产精品| 国产福利电影一区二区三区久久久久成人精品综合 | 一级做a爰片久久毛片看看| 久久久久久极精品久久久| 国产精品热久久毛片| 九九热久久免费视频| 久久久久这里只有精品| 色综合久久88色综合天天 | 亚洲精品无码久久久| 中文字幕乱码久久午夜|