POJ 1015 Jury Compromise 動態規劃
Description
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties.
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution.
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties.
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.
Input
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next.
The file ends with a round that has n = m = 0.
Output
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number.
Output an empty line after each test case.
Sample Input
4 2 1 2 2 3 4 1 6 2 0 0
Sample Output
Jury #1 Best jury has value 6 for prosecution and value 4 for defence: 2 3
Hint
Source
在遙遠的國家佛羅布尼亞,嫌犯是否有罪,須由陪審團決定。陪審團是由法官從公眾中挑選的。先隨機挑選n 個人作為陪審團的候選人,然后再從這n 個人中選m 人組成陪審團。選m 人的辦法是:控方和辯方會根據對候選人的喜歡程度,給所有候選人打分,分值從0 到20。為了公平起見,法官選出陪審團的原則是:選出的m 個人,必須滿足辯方總分和控方總分的差的絕對值最小。如果有多種選擇方案的辯方總分和控方總分的之差的絕對值相同,那么選辯控雙方總分之和最大的方案即可。最終選出的方案稱為陪審團方案。
為敘述問題方便,現將任一選擇方案中,辯方總分和控方總分之差簡稱為“辯控差”,辯方總分和控方總分之和稱為“辯控和”。第i 個候選人的辯方總分和控方總分之差記為V(i),辯方總分和控方總分之和記為S(i)?,F用f(j, k)表示,取j 個候選人,使其辯控差為k 的所有方案中,辯控和最大的那個方案(該方案稱為“方案f(j, k)”)的辯控和。并且,我們還規定,如果沒法選j 個人,使其辯控差為k,那么f(j, k)的值就為-1,也稱方案f(j, k)不可行。本題是要求選出m 個人,那么,如果對k 的所有可能的取值,求出了所有的f(m, k) (-20×m≤ k ≤ 20×m),那么陪審團方案自然就很容易找到了。
問題的關鍵是建立遞推關系。需要從哪些已知條件出發,才能求出f(j, k)呢?顯然,方案f(j, k)是由某個可行的方案f(j-1, x)( -20×m ≤ x ≤ 20×m)演化而來的。可行方案f(j-1, x)能演化成方案f(j, k)的必要條件是:存在某個候選人i,i 在方案f(j-1, x)中沒有被選上,且x+V(i) = k。在所有滿足該必要條件的f(j-1, x)中,選出 f(j-1, x) + S(i) 的值最大的那個,那么方案f(j-1, x)再加上候選人i,就演變成了方案 f(j, k)。這中間需要將一個方案都選了哪些人都記錄下來。不妨將方案f(j, k)中最后選的那個候選人的編號,記在二維數組的元素path[j][k]中。那么方案f(j, k)的倒數第二個人選的編號,就是path[j-1][k-V[path[j][k]]。假定最后算出了解方案的辯控差是k,那么從path[m][k]出發,就能順藤摸瓜一步步求出所有被選中的候選人。初始條件,只能確定f(0, 0) = 0。由此出發,一步步自底向上遞推,就能求出所有的可行方案f(m, k)( -20×m ≤ k ≤ 20×m)。實際解題的時候,會用一個二維數組f 來存放f(j, k)的值。而且,由于題目中辯控差的值k 可以為負數,而程序中數租下標不能為負數,所以,在程序中不妨將辯控差的值都加上400,以免下標為負數導致出錯,即題目描述中,如果辯控差為0,則在程序中辯控差為400。
#include <iostream>
using namespace std;
int p[201],d[201],result[21];
int dp[21][801],path[21][801];

int cmp(const void *a,const void *b)
{
return *(int *)a-*(int *)b;
}
bool select(int a,int b,int i)
{
while(a>0 && path[a][b]!=i)
{
b-=p[path[a][b]]-d[path[a][b]];
a--;
}
return (a!=0)?true:false;
}
int main()
{
int i,j,k,a,b,n,m,origin,ca=1;
while(scanf("%d %d",&n,&m),n||m)
{
for(i=1;i<=n;i++)
scanf("%d %d",p+i,d+i);
memset(dp,-1,sizeof(dp));
memset(path,0,sizeof(path));
origin=m*20;
for(dp[0][origin]=j=0;j<m;j++)
for(k=0;k<=origin*2;k++)
if(dp[j][k]>=0)
{
for(i=1;i<=n;i++)
if(dp[j+1][k+p[i]-d[i]]<dp[j][k]+p[i]+d[i])
{
a=j,b=k;
if(!select(a,b,i))
{
dp[j+1][k+p[i]-d[i]]=dp[j][k]+p[i]+d[i];
path[j+1][k+p[i]-d[i]]=i;
}
}
}
for(i=origin,j=0;dp[m][i+j]<0 && dp[m][i-j]<0;j++);
k=dp[m][i+j]>dp[m][i-j]?i+j:i-j;
printf("Jury #%d\n",ca++);
printf("Best jury has value %d for prosecution and value %d for defence:\n",(dp[m][k]+k-origin)/2, (dp[m][k]-k+origin)/2);
for(i=1;i<=m;i++)
{
result[i]=path[m-i+1][k];
k-=p[result[i]]-d[result[i]];
}
qsort(result+1,m,sizeof(int),cmp);
for(i=1;i<=m;i++)
printf(" %d",result[i]);
printf("\n");
printf("\n");
}
return 0;
}
posted on 2009-06-23 17:08 極限定律 閱讀(4820) 評論(6) 編輯 收藏 引用 所屬分類: ACM/ICPC

