• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            差分約束系統(tǒng)詳解

             

            差分約束系統(tǒng)

                在一個差分約束系統(tǒng)(system of difference constraints)中,線性規(guī)劃矩陣A的每一行包含一個1和一個-1A的其他所有元素都為0。因此,由Axb給出的約束條件是m個差分約束集合,其中包含n個未知量,對應(yīng)的線性規(guī)劃矩陣Amn列。每個約束條件為如下形式的簡單線性不等式:xj-xibk。其中1i,jn1km

                例如,考慮這樣一個問題,尋找一個5維向量x=(xi)以滿足:

             

                這一問題等價于找出未知量xii=1,2,…,5,滿足下列8個差分約束條件:

            x1-x20

            x1-x5-1

            x2-x51

            x3-x15

            x4-x14

            x4-x3-1

            x5-x3-3

            x5-x4-3

                該問題的一個解為x=(-5,-3,0,-1,-4),另一個解y=(0,2,5,4,1),這2個解是有聯(lián)系的:y中的每個元素比x中相應(yīng)的元素大5

             
            引理:設(shè)x=(x1,x2,…,xn)是差分約束系統(tǒng)Axb的一個解,d為任意常數(shù)。則x+d=(x1+d,x2+d,…,xn+d)也是該系統(tǒng)Axb的一個解。

             

            約束圖

               在一個差分約束系統(tǒng)Axb中,m X n的線性規(guī)劃矩陣A可被看做是n頂點,m條邊的圖的關(guān)聯(lián)矩陣。對于i=1,2,…,n,圖中的每一個頂點vi對應(yīng)著n個未知量的一個xi。圖中的每個有向邊對應(yīng)著關(guān)于兩個未知量的m個不等式中的一個。

               給定一個差分約束系統(tǒng)Axb,相應(yīng)的約束圖是一個帶權(quán)有向圖G=(V,E),其中V={v0,v1,…,vn},而且E={ (vi,vj) : xj-xibk是一個約束}∪{ (v0,v1) , (v0,v2) , … , (v0,vn) }。引入附加頂點v0是為了保證其他每個頂點均從v0可達(dá)。因此,頂點集合V由對應(yīng)于每個未知量xi的頂點vi和附加的頂點v0組成。邊的集合E由對應(yīng)于每個差分約束條件的邊與對應(yīng)于每個未知量xi的邊(v0,vi)構(gòu)成。如果xj-xibk是一個差分約束,則邊(vi,vj)的權(quán)w(vi,vj)=bk(注意ij不能顛倒),v0出發(fā)的每條邊的權(quán)值均為0

              
            定理:給定一差分約束系統(tǒng)Axb,設(shè)G=(V,E)為其相應(yīng)的約束圖。如果G不包含負(fù)權(quán)回路,那么x=( d(v0,v1) , d(v0,v2) , … , d(v0,vn) )是此系統(tǒng)的一可行解,其中d(v0,vi)是約束圖中v0vi的最短路徑(i=1,2,…,n)。如果G包含負(fù)權(quán)回路,那么此系統(tǒng)不存在可行解。

             

            差分約束問題的求解

               由上述定理可知,可以采用Bellman-Ford算法對差分約束問題求解。因為在約束圖中,從源點v0到其他所有頂點間均存在邊,因此約束圖中任何負(fù)權(quán)回路均從v0可達(dá)。如果Bellman-Ford算法返回TRUE,則最短路徑權(quán)給出了此系統(tǒng)的一個可行解;如果返回FALSE,則差分約束系統(tǒng)無可行解。

               關(guān)于n個未知量m個約束條件的一個差分約束系統(tǒng)產(chǎn)生出一個具有n+1個頂點和n+m條邊的約束圖。因此采用Bellman-Ford算法,可以再O((n+1)(n+m))=O(n^2+nm)時間內(nèi)將系統(tǒng)解決。此外,可以用SPFA算法進(jìn)行優(yōu)化,復(fù)雜度為O(km),其中k 為常數(shù)。

            http://acm.pku.edu.cn/JudgeOnline/problem?id=1364

            Description

            Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: ``If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son.
            Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

            The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

            After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.

            Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.

            After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.

            Input

            The input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.

            Output

            The output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last ``null'' block of the input.

            Sample Input

            4 2
            1 2 gt 0
            2 2 lt 2
            1 2
            1 0 gt 0
            1 0 lt 0
            0

            Sample Output

            lamentable kingdom
            successful conspiracy

            Source


            很典型的差分約束,關(guān)鍵在于怎么構(gòu)圖。
            這里我們設(shè)Sum(i) = A1 + A2 + … + Ai-1
            那么輸入的si ni oi ki
            就可以轉(zhuǎn)換成如下的約束式:Sum(si+ni+1) - Sum(si) oi ki

            #include <iostream>
            using namespace std;

            const int MAXN = 120;
            const int inf = 0x7f;
            struct node{
                
            int s,e,v;
            }
            edge[MAXN];
            int n,m,d[MAXN];

            bool bellman_ford(){
                
            int i,j;
                
            for(i=0;i<=n+1;i++) d[i]=inf;
                
            for(d[0]=0,i=1;i<=n+1;i++)
                    
            for(j=0;j<=(n+m);j++)
                        
            if(d[edge[j].s]+edge[j].v<d[edge[j].e])
                            d[edge[j].e]
            =d[edge[j].s]+edge[j].v;
                
            for(i=0;i<=(n+m);i++)
                    
            if(d[edge[i].s]+edge[i].v<d[edge[i].e])
                        
            return false;
                
            return true;
            }

            int main(){
                
            char oi[5];
                
            int si,ni,k,i,j;
                
            while(scanf("%d",&n),n){
                    scanf(
            "%d",&m);
                    
            for(i=0;i<m;i++){
                        scanf(
            "%d %d\n",&si,&ni);
                        scanf(
            "%s %d",oi,&k);
                        
            if(oi[0]=='g')
                            edge[i].s
            =si,edge[i].e=si+ni+1,edge[i].v=-k-1;
                        
            else
                            edge[i].s
            =si+ni+1,edge[i].e=si,edge[i].v=k-1;
                    }

                    
            for(i=1,j=m;i<=n+1;i++,j++)
                        edge[j].s
            =0,edge[j].e=i,edge[j].v=0;
                    puts(bellman_ford()
            ?"lamentable kingdom":"successful conspiracy");
                }

                
            return 0;
            }

            posted on 2009-06-04 15:25 極限定律 閱讀(2197) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導(dǎo)航

            統(tǒng)計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久99精品国产麻豆不卡| 久久综合九色综合欧美就去吻| 久久精品18| 亚洲欧美国产精品专区久久| 狠狠综合久久综合88亚洲| 无码超乳爆乳中文字幕久久| 国产精品一区二区久久| 午夜精品久久久内射近拍高清 | 青青草原精品99久久精品66| 久久精品国产99国产电影网| 久久精品视频一| 成人国内精品久久久久影院VR| 伊人丁香狠狠色综合久久| 人人妻久久人人澡人人爽人人精品 | 久久精品国产精品亚洲精品| 香蕉久久夜色精品国产2020| 精品久久久久久久无码| 久久久久一本毛久久久| 国产精品9999久久久久| 久久中文字幕人妻熟av女| 久久久青草久久久青草| 久久久久99精品成人片直播| 日韩欧美亚洲国产精品字幕久久久| 久久99精品久久久久婷婷| 久久久久久久久久久久久久| 婷婷久久综合九色综合绿巨人 | 久久这里有精品视频| 99久久精品这里只有精品| 国内精品久久人妻互换| 亚洲国产欧美国产综合久久| 中文成人无码精品久久久不卡| 久久久久国产一级毛片高清板| 久久精品中文字幕久久| 国产99精品久久| 久久电影网2021| 国内精品久久久久久野外| 九九久久自然熟的香蕉图片| 99久久久国产精品免费无卡顿 | 2020久久精品国产免费| 久久99精品国产一区二区三区| 久久久久久综合一区中文字幕|