• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 3177 Redundant Paths 雙連通分量+縮點(diǎn)

            Description

            In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

            Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

            There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

            Input

            Line 1: Two space-separated integers: F and R

            Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

            Output

            Line 1: A single integer that is the number of new paths that must be built.

            Sample Input

            7 7
            1 2
            2 3
            3 4
            2 5
            4 5
            5 6
            5 7

            Sample Output

            2

            Hint

            Explanation of the sample:

            One visualization of the paths is:
               1   2   3
            +---+---+
            | |
            | |
            6 +---+---+ 4
            / 5
            /
            /
            7 +
            Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
               1   2   3
            +---+---+
            : | |
            : | |
            6 +---+---+ 4
            / 5 :
            / :
            / :
            7 + - - - -
            Check some of the routes:
            1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
            1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
            3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7

            Every pair of fields is, in fact, connected by two routes.

            It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

            Source


                題意大意:一群牛將被在一個(gè)特定路徑構(gòu)成的農(nóng)場(chǎng)上遷移,每?jī)蓧K農(nóng)場(chǎng)之間都至少有一條通道,這些牛要求每?jī)蓧K路徑至少要有兩條通道,求最少需要修建多少條路才能滿足要求。
                這題的解法與http://m.shnenglu.com/mythit/archive/2009/05/29/86082.html完全一樣,只是題目中說(shuō)了圖中有可能存在平行邊,這里必須判斷一下。我還是很偷懶的用了STL里的vector模擬鄰接矩陣,并且開(kāi)了個(gè)5001*5001的bool數(shù)組判斷平行邊。結(jié)果導(dǎo)致代碼的效率和空間消耗都很大,110MS和將近24M的內(nèi)存空間。如果自己建圖的話,效率能提高很多。

            #include <iostream>
            #include 
            <vector>
            using namespace std;

            const int MAXN = 5001;
            vector
            < vector<int> > adj;
            bool hash[MAXN][MAXN];
            int cnt,low[MAXN],pre[MAXN],visit[MAXN],degree[MAXN];

            void dfs(int u,int v){
                visit[u]
            =1;
                pre[u]
            =cnt++,low[u]=pre[u];
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++){
                    
            if(adj[u][i]==v) continue;
                    
            if(!visit[adj[u][i]]) dfs(adj[u][i],u);
                    
            if(low[adj[u][i]]<low[u]) low[u]=low[adj[u][i]];
                }

                visit[u]
            =2;
            }

            int main(){
                
            int i,j,u,v,n,m,len,ans;
                
            while(scanf("%d %d",&n,&m)!=EOF){
                    adj.assign(n
            +1,vector<int>());
                    memset(hash,
            false,sizeof(hash));
                    
            while(m--){
                        scanf(
            "%d %d",&u,&v);
                        
            if(!hash[u][v]){
                            hash[u][v]
            =true;
                            adj[u].push_back(v),adj[v].push_back(u);
                        }

                    }

                    memset(visit,
            0,sizeof(visit));
                    cnt
            =0,dfs(1,1);
                    memset(degree,
            0,sizeof(degree));
                    
            for(i=1;i<=n;i++){
                        len
            =adj[i].size();
                        
            for(j=0;j<len;j++)
                            
            if(low[i]!=low[adj[i][j]])
                                degree[low[i]]
            ++;
                    }

                    
            for(ans=i=0;i<=n;i++)
                        
            if(degree[i]==1) ans++;
                    printf(
            "%d\n",(ans+1)/2);
                }

                
            return 0;
            }

            posted on 2009-05-30 01:18 極限定律 閱讀(1533) 評(píng)論(4)  編輯 收藏 引用 所屬分類: ACM/ICPC

            評(píng)論

            # re: POJ 3177 Redundant Paths 雙連通分量+縮點(diǎn) 2009-08-14 09:53 zeus

            省去hash可以這樣判重空間小很多 時(shí)間沒(méi)多多少 依然0ms
            bool isok( int u, int v )//判重
            {
            for ( int i= 0; i< g[u].size(); ++i )
            if ( g[u][i]== v ) return false;

            return true;
            }  回復(fù)  更多評(píng)論   

            # re: POJ 3177 Redundant Paths 雙連通分量+縮點(diǎn) 2009-08-14 20:55 極限定律

            我也想這樣做的,不過(guò)怕時(shí)間效率變低,就偷懶直接HASH了@zeus
              回復(fù)  更多評(píng)論   

            # re: POJ 3177 Redundant Paths 雙連通分量+縮點(diǎn) 2011-04-28 09:30 Icyeye

            拜讀了哈,幫助很大,謝啦^-^
            但是有一點(diǎn),那個(gè)visit[u]=2不知道有什么用,但注釋掉后能快三分之二左右的時(shí)間~~  回復(fù)  更多評(píng)論   

            # re: POJ 3177 Redundant Paths 雙連通分量+縮點(diǎn)[未登錄](méi) 2012-07-31 20:48 bigrabbit

            樓主,我發(fā)現(xiàn)個(gè)問(wèn)題。這組數(shù)據(jù)對(duì)于下面的數(shù)據(jù)
            5 6
            1 2
            1 3
            2 3
            3 4
            3 5
            4 5
            輸出的low數(shù)組是 0 0 0 1 1
            是不對(duì)的,應(yīng)該是0 0 0 0 0,你建圖的方式很奇怪,我也看不懂你到底是怎么建圖的。可以解釋下嗎?我直接用vector<int> edg[]搞的,刪除重邊。  回復(fù)  更多評(píng)論   

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導(dǎo)航

            統(tǒng)計(jì)

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            久久婷婷五月综合97色直播| 精品久久久久久中文字幕人妻最新| 精品国产福利久久久| 久久久久亚洲av无码专区| av国内精品久久久久影院| 久久国产成人精品国产成人亚洲| 日韩欧美亚洲综合久久影院Ds| 久久久SS麻豆欧美国产日韩| 色偷偷偷久久伊人大杳蕉| 国产精品久久久久一区二区三区| 久久精品国产欧美日韩99热| 91精品国产综合久久精品| 青青久久精品国产免费看 | 久久综合给久久狠狠97色| 国产精品一久久香蕉国产线看观看 | 少妇精品久久久一区二区三区| 国产精品久久久久jk制服| 久久久久久国产精品无码下载 | 色婷婷综合久久久久中文字幕| 久久久久久久久久久久中文字幕 | 国产精品热久久无码av| 亚洲中文精品久久久久久不卡 | 日韩精品久久久肉伦网站| 久久久WWW免费人成精品| 精品国产乱码久久久久久郑州公司| 久久这里只精品99re66| 精品国产热久久久福利| 国产欧美久久一区二区| 国产成人精品久久一区二区三区 | 国内精品伊人久久久久网站| 97超级碰碰碰久久久久| 国产婷婷成人久久Av免费高清 | 久久久久久A亚洲欧洲AV冫| 人人狠狠综合久久亚洲88| 九九久久自然熟的香蕉图片| 久久香蕉超碰97国产精品| 久久久久99精品成人片试看| 久久天天躁狠狠躁夜夜96流白浆 | 欧美日韩成人精品久久久免费看| 婷婷综合久久狠狠色99h| 狠狠狠色丁香婷婷综合久久五月|