• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1523 SPF 割點+分割連通塊的數量

            Description

            Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

            Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate.

            Input

            The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

            Output

            For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

            The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

            Sample Input

            1 2
            5 4
            3 1
            3 2
            3 4
            3 5
            0
            1 2
            2 3
            3 4
            4 5
            5 1
            0
            1 2
            2 3
            3 4
            4 6
            6 3
            2 5
            5 1
            0
            0

            Sample Output

            Network #1
            SPF node 3 leaves 2 subnets
            Network #2
            No SPF nodes
            Network #3
            SPF node 2 leaves 2 subnets
            SPF node 3 leaves 2 subnets

            Source


                圖論,又是一道割點的題,并且還要求出圖中所有的割點分別能將圖分割成幾個不同的塊。可以將某個割點的訪問標記設置為1,然后對圖進行dfs,方法類似求圖中有幾個連通的區域。
            #include <iostream>
            #include 
            <vector>
            using namespace std;

            const int MAXN = 1010;
            bool flag,cut[MAXN],visit[MAXN];
            vector
            < vector<int> > adj;
            int mark[MAXN],deep[MAXN],ancestor[MAXN];

            void dfs(int u,int father,int depth){
                
            int i,v,son=0,len=adj[u].size();
                mark[u]
            =1,deep[u]=ancestor[u]=depth;
                
            for(i=0;i<len;i++){
                    v
            =adj[u][i];
                    
            if(v!=father && mark[v]==1)
                        ancestor[u]
            =min(ancestor[u],deep[v]);
                    
            if(mark[v]==0){
                        dfs(v,u,depth
            +1);
                        son
            =son+1;
                        ancestor[u]
            =min(ancestor[u],ancestor[v]);
                        
            if((father==-1 && son>1|| (father!=-1 && ancestor[v]>=deep[u]))
                            cut[u]
            =true;
                    }

                }

                mark[u]
            =2;
            }

            void partition(int u){
                visit[u]
            =true;
                
            int i,len=adj[u].size();
                
            for(i=0;i<len;i++)
                    
            if(!visit[adj[u][i]])
                        partition(adj[u][i]);
            }

            int main(){
                
            int i,j,x,y,n,cnt,ca=1;
                
            while(scanf("%d",&x),x){
                    scanf(
            "%d",&y);
                    adj.assign(MAXN,vector
            <int>());
                    n
            =max(x,y);
                    adj[x
            -1].push_back(y-1),adj[y-1].push_back(x-1);
                    
            while(scanf("%d",&x)){
                        
            if(x==0break;
                        scanf(
            "%d",&y);
                        n
            =max(x,y);
                        adj[x
            -1].push_back(y-1),adj[y-1].push_back(x-1);
                    }

                    memset(cut,
            false,sizeof(cut));
                    memset(mark,
            0,sizeof(mark));
                    
            for(i=0;i<n;i++)
                        
            if(mark[i]==0
                            dfs(
            0,-1,0);
                    printf(
            "Network #%d\n",ca++);
                    
            for(flag=false,i=0;i<n;i++)
                        
            if(cut[i]){
                            flag
            =true;
                            memset(visit,
            false,sizeof(visit));
                            
            for(visit[i]=true,cnt=j=0;j<n;j++)
                                
            if(!visit[j])
                                    partition(j),cnt
            ++;
                            printf(
            "  SPF node %d leaves %d subnets\n",i+1,cnt);
                        }

                    
            if(!flag)
                        printf(
            "  No SPF nodes\n");
                    printf(
            "\n");
                }

                
            return 0;
            }

            posted on 2009-05-28 19:18 極限定律 閱讀(1097) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久久99精品成人片试看| 9999国产精品欧美久久久久久| 久久狠狠一本精品综合网| 免费精品99久久国产综合精品| 精品免费久久久久国产一区| 四虎国产精品成人免费久久| 亚洲伊人久久大香线蕉综合图片 | 久久精品国产99久久久| 精品免费久久久久久久| 久久久受www免费人成| 欧美午夜精品久久久久免费视| 青青草国产成人久久91网| 综合久久一区二区三区 | www亚洲欲色成人久久精品| 亚洲国产成人久久精品99| 国产精品久久久久久久久| 久久99国产精品久久99小说| 久久久久久综合一区中文字幕| 久久午夜免费视频| 精品99久久aaa一级毛片| 久久精品黄AA片一区二区三区 | 亚洲狠狠婷婷综合久久久久| 91超碰碰碰碰久久久久久综合| 精品久久久无码人妻中文字幕| 久久无码av三级| 国产精品99久久精品| 久久久久精品国产亚洲AV无码| 国产午夜精品理论片久久| 国产精品一久久香蕉产线看 | 午夜福利91久久福利| 免费观看久久精彩视频| 国产精品久久久久jk制服| 亚洲AV日韩AV永久无码久久| 久久91精品国产91久| 久久综合九色欧美综合狠狠 | 久久91这里精品国产2020| 狠狠色丁香久久综合五月| 东京热TOKYO综合久久精品| 久久精品亚洲中文字幕无码麻豆 | 亚洲国产精品高清久久久| 亚洲中文久久精品无码|