• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1459 Power Network 最大網絡流

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
            (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
            (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
               
                輸入分別為m個點,a個發電站,b個用戶,n條邊;接下去是n條邊的信息(u,v)cost,cost表示邊(u,v)的最大流量;a個發電站的信息(u)cost,cost表示發電站u能提供的最大流量;b個用戶的信息(v)cost,cost表示每個用戶v能接受的最大流量。
                典型的最大網絡流中多源多匯的問題,在圖中添加1個源點S和匯點T,將S和每個發電站相連,邊的權值是發電站能提供的最大流量;將每個用戶和T相連,邊的權值是每個用戶能接受的最大流量。從而轉化成了一般的最大網絡流問題,然后求解。
            #include <iostream>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,start,end;
            int path[MAXN],flow[MAXN],map[MAXN][MAXN];
            queue
            <int> q;

            int bfs(){
                
            int i,t;
                
            while(!q.empty()) q.pop();
                memset(path,
            -1,sizeof(path));
                path[start]
            =0,flow[start]=INF;
                q.push(start);
                
            while(!q.empty()){
                    t
            =q.front();
                    q.pop();
                    
            if(t==end) break;
                    
            for(i=1;i<=m;i++){
                        
            if(i!=start && path[i]==-1 && map[t][i]){
                            flow[i]
            =flow[t]<map[t][i]?flow[t]:map[t][i];
                            q.push(i);
                            path[i]
            =t;
                        }

                    }

                }

                
            if(path[end]==-1return -1;
                
            return flow[end];                   
            }

            int Edmonds_Karp(){
                
            int max_flow=0,step,now,pre;
                
            while((step=bfs())!=-1){
                    max_flow
            +=step;
                    now
            =end;
                    
            while(now!=start){
                        pre
            =path[now];
                        map[pre][now]
            -=step;
                        map[now][pre]
            +=step;
                        now
            =pre;
                    }

                }

                
            return max_flow;
            }

            int main(){
                
            int i,a,b,u,v,cost;
                
            while(scanf("%d %d %d %d",&m,&a,&b,&n)!=EOF){
                    getchar();
                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<n;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d,%d)%d",&u,&v,&cost);
                        map[u
            +1][v+1]=cost;
                    }

                    
            for(start=m+1,i=0;i<a;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&u,&cost);
                        map[start][u
            +1]=cost;
                    }

                    
            for(end=m+2,i=0;i<b;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&v,&cost);
                        map[v
            +1][end]=cost;
                    }

                    m
            =m+2;
                    printf(
            "%d\n",Edmonds_Karp());
                }

                
            return 0;
            }

            posted on 2009-05-23 09:54 極限定律 閱讀(729) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2013年1月>
            303112345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            久久久久久狠狠丁香| 久久久久久伊人高潮影院| 97精品伊人久久大香线蕉app| 久久精品国产亚洲av麻豆蜜芽| 欧美亚洲国产精品久久高清| 亚洲人成网亚洲欧洲无码久久| 久久夜色精品国产欧美乱| 午夜久久久久久禁播电影| 久久久久久久久无码精品亚洲日韩 | 久久亚洲精品无码观看不卡| 欧美伊人久久大香线蕉综合 | 99久久国产综合精品女同图片| 97久久综合精品久久久综合| 少妇久久久久久被弄到高潮 | 久久综合给久久狠狠97色| 久久se精品一区二区影院| 人妻少妇久久中文字幕| 香蕉99久久国产综合精品宅男自| 久久人人爽人人爽人人片AV不| 99久久免费国产精品| 国产精品久久网| 国产偷久久久精品专区| 欧洲国产伦久久久久久久| 久久国产精品成人片免费| 国内精品久久久久影院亚洲| 久久国产免费| 久久激情亚洲精品无码?V| 国产激情久久久久影院老熟女| 99999久久久久久亚洲| 伊人久久大香线焦AV综合影院| 久久国产AVJUST麻豆| 亚洲精品无码久久久久AV麻豆| 国产福利电影一区二区三区久久久久成人精品综合 | 久久久久久极精品久久久| 四虎国产精品免费久久5151| 久久久久免费看成人影片| 亚洲精品高清国产一线久久| 久久成人小视频| 国产成人精品久久| 久久久久亚洲av无码专区 | 久久久久亚洲av成人无码电影|