• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1459 Power Network 最大網絡流

            Description

            A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

            An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

            Input

            There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

            Output

            For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

            Sample Input

            2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
            7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
            (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
            (0)5 (1)2 (3)2 (4)1 (5)4

            Sample Output

            15
            6

            Hint

            The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
               
                輸入分別為m個點,a個發電站,b個用戶,n條邊;接下去是n條邊的信息(u,v)cost,cost表示邊(u,v)的最大流量;a個發電站的信息(u)cost,cost表示發電站u能提供的最大流量;b個用戶的信息(v)cost,cost表示每個用戶v能接受的最大流量。
                典型的最大網絡流中多源多匯的問題,在圖中添加1個源點S和匯點T,將S和每個發電站相連,邊的權值是發電站能提供的最大流量;將每個用戶和T相連,邊的權值是每個用戶能接受的最大流量。從而轉化成了一般的最大網絡流問題,然后求解。
            #include <iostream>
            #include 
            <queue>
            using namespace std;

            const int MAXN = 110;
            const int INF = 0x7FFFFFFF;
            int n,m,start,end;
            int path[MAXN],flow[MAXN],map[MAXN][MAXN];
            queue
            <int> q;

            int bfs(){
                
            int i,t;
                
            while(!q.empty()) q.pop();
                memset(path,
            -1,sizeof(path));
                path[start]
            =0,flow[start]=INF;
                q.push(start);
                
            while(!q.empty()){
                    t
            =q.front();
                    q.pop();
                    
            if(t==end) break;
                    
            for(i=1;i<=m;i++){
                        
            if(i!=start && path[i]==-1 && map[t][i]){
                            flow[i]
            =flow[t]<map[t][i]?flow[t]:map[t][i];
                            q.push(i);
                            path[i]
            =t;
                        }

                    }

                }

                
            if(path[end]==-1return -1;
                
            return flow[end];                   
            }

            int Edmonds_Karp(){
                
            int max_flow=0,step,now,pre;
                
            while((step=bfs())!=-1){
                    max_flow
            +=step;
                    now
            =end;
                    
            while(now!=start){
                        pre
            =path[now];
                        map[pre][now]
            -=step;
                        map[now][pre]
            +=step;
                        now
            =pre;
                    }

                }

                
            return max_flow;
            }

            int main(){
                
            int i,a,b,u,v,cost;
                
            while(scanf("%d %d %d %d",&m,&a,&b,&n)!=EOF){
                    getchar();
                    memset(map,
            0,sizeof(map));
                    
            for(i=0;i<n;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d,%d)%d",&u,&v,&cost);
                        map[u
            +1][v+1]=cost;
                    }

                    
            for(start=m+1,i=0;i<a;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&u,&cost);
                        map[start][u
            +1]=cost;
                    }

                    
            for(end=m+2,i=0;i<b;i++){
                        
            while(getchar()!='(');
                        scanf(
            "%d)%d",&v,&cost);
                        map[v
            +1][end]=cost;
                    }

                    m
            =m+2;
                    printf(
            "%d\n",Edmonds_Karp());
                }

                
            return 0;
            }

            posted on 2009-05-23 09:54 極限定律 閱讀(730) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年5月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            99精品久久久久中文字幕| 精品国产91久久久久久久| 欧美久久一区二区三区| 一本一道久久a久久精品综合| 久久午夜无码鲁丝片秋霞 | 精品综合久久久久久97超人| 久久精品国产欧美日韩| 伊人久久大香线蕉亚洲五月天| 国产精品gz久久久| 伊人久久大香线蕉亚洲五月天| 国产精品综合久久第一页| 漂亮人妻被黑人久久精品| 亚洲а∨天堂久久精品| 久久精品国产一区| www性久久久com| 囯产极品美女高潮无套久久久| 国产综合免费精品久久久| 欧美va久久久噜噜噜久久| 久久人人爽人人爽人人片AV不| 国产精品一区二区久久精品无码| 久久精品天天中文字幕人妻 | 99久久精品免费看国产一区二区三区| 亚洲国产精品一区二区久久| 亚洲AV无码久久精品成人| 亚洲成av人片不卡无码久久| 久久99精品久久久久久水蜜桃| 久久国产精品-国产精品| 国产精品99久久免费观看| 久久精品国产亚洲av麻豆色欲| 久久99热这里只频精品6| 合区精品久久久中文字幕一区| 国产精品永久久久久久久久久| 国内精品久久久久久久久| 国产精品嫩草影院久久| 国产精品99久久不卡| 久久久精品久久久久久| 久久精品亚洲乱码伦伦中文| 国产精品熟女福利久久AV| 久久久久无码精品国产app| 天堂无码久久综合东京热| 伊人久久大香线蕉成人|