• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1151 Atlantis 離散化+掃描線

            Problem Description
            There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
             

            Input
            The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

            The input file is terminated by a line containing a single 0. Don’t process it.
             

            Output
            For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

            Output a blank line after each test case.
             

            Sample Input
            2
            10 10 20 20
            15 15 25 25.5
            0
             

            Sample Output
            Test case #1
            Total explored area: 180.00 
                題目的意思是給定n個矩形的2n個坐標,求矩形的覆蓋面積。如果開一個大的bool數組,將覆蓋過的部分更新為true,再從頭到尾掃描一遍,在坐標范圍比較小的情況下,可以求解。但是如果坐標x,y的取值范圍很大,比如[-10^8,10^8],用上面這個方法就不能求解了;而且坐標還有可能是實數,上面的方法就更加不可行了,需要尋找一種新的解法,就是下面要說到的“離散化”。
                注意到要表示一個矩形,只需要知道其2個頂點的坐標就可以了(最左下,最右上)??梢杂?個數組x[0...2n-1],y[0...2n-1]記錄下矩形Ri的2個坐標(x1,y1),(x2,y2),然后將數組x[0...xn-1],y[0...2n-1]排序,為下一步的掃描線作準備,這就是離散化的思想。這題還可以用線段樹做進一步優化,但是這里只介紹離散化的思想。
                看下面這個例子:有2個矩形(1,1),(3,3)和(2,2),(4,4)。如圖:
                圖中虛線表示掃描線,下一步工作只需要將這2個矩形覆蓋過的部分的bool數組的對應位置更新為true,接下去用掃描線從左到右,從上到下掃描一遍,就可以求出矩形覆蓋的總面積。
                這個圖對應的bool數組的值如下:
                1 1 0                       1 2 3
                1 1 1       <---->       4 5 6
                0 1 1                       7 8 9
             1 #include <iostream>
             2 #include <cmath>
             3 using namespace std;
             4 
             5 const int N = 101;
             6 const double eps = 1e-6;
             7 double ans,x[2*N],y[2*N];
             8 double pos[N][4];
             9 bool hash[2*N][2*N];
            10 
            11 int cmp(const void *a,const  void *b){
            12     double *aa = (double *)a;
            13     double *bb = (double *)b;
            14     if(fabs(*aa-*bb)<=eps) return 0;
            15     else if(*aa-*bb>0return 1;
            16     else return -1;
            17 }
            18 int main(){
            19     int i,j,k,n,x1,x2,y1,y2,ca=1;
            20     while(scanf("%d",&n),n){
            21         for(ans=i=k=0;i<n;i++,k+=2){
            22             scanf("%lf %lf %lf %lf",&pos[i][0],&pos[i][1],&pos[i][2],&pos[i][3]);
            23             x[k]=pos[i][0],y[k]=pos[i][1],x[k+1]=pos[i][2],y[k+1]=pos[i][3];
            24         }
            25         memset(hash,false,sizeof(hash));
            26         qsort(x,2*n,sizeof(x[0]),cmp);
            27         qsort(y,2*n,sizeof(y[0]),cmp);
            28         for(i=0;i<n;i++){
            29             for(k=0;fabs(x[k]-pos[i][0])>eps;k++); x1=k;
            30             for(k=0;fabs(y[k]-pos[i][1])>eps;k++); y1=k;
            31             for(k=0;fabs(x[k]-pos[i][2])>eps;k++); x2=k;
            32             for(k=0;fabs(y[k]-pos[i][3])>eps;k++); y2=k;
            33             for(j=x1;j<x2;j++for(k=y1;k<y2;k++)
            34                 hash[j][k]=true;
            35         }
            36         for(i=0;i<2*n-1;i++)
            37             for(j=0;j<2*n-1;j++)
            38                 ans+=hash[i][j]*(x[i+1]-x[i])*(y[j+1]-y[j]);            
            39         printf("Test case #%d\n",ca++);
            40         printf("Total explored area: %.2lf\n",ans);
            41         printf("\n");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-26 19:43 極限定律 閱讀(725) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2009年4月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            人妻无码久久一区二区三区免费| 国产成人久久777777| 久久91这里精品国产2020| 久久综合九色综合久99| 国产成人精品久久| 国产精品激情综合久久| 久久久久久久91精品免费观看| 亚洲综合日韩久久成人AV| 中文字幕一区二区三区久久网站| 久久综合一区二区无码| 久久国产精品久久| 99久久综合国产精品免费| 久久无码av三级| 亚洲精品乱码久久久久久自慰| 99久久精品免费观看国产| 亚洲AV无码久久| 久久受www免费人成_看片中文| 国产精品久久久久久福利漫画| 日日狠狠久久偷偷色综合免费| 国产精品久久久亚洲| 国产毛片欧美毛片久久久| 理论片午午伦夜理片久久| 99久久国产综合精品成人影院 | 久久99精品久久只有精品| 精品久久综合1区2区3区激情| 久久青青草原精品国产| 一本一本久久a久久精品综合麻豆| 久久免费精品视频| 97久久综合精品久久久综合| 久久久久久久97| 无码伊人66久久大杳蕉网站谷歌| 免费精品久久久久久中文字幕| 国产精品99久久久久久宅男| 色综合久久最新中文字幕| 99久久精品国内| 久久狠狠高潮亚洲精品| 潮喷大喷水系列无码久久精品| 久久精品黄AA片一区二区三区| 亚洲AV无码1区2区久久| 久久久综合九色合综国产| 91久久香蕉国产熟女线看|