• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            POJ 1151 Atlantis 離散化+掃描線

            Problem Description
            There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
             

            Input
            The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

            The input file is terminated by a line containing a single 0. Don’t process it.
             

            Output
            For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

            Output a blank line after each test case.
             

            Sample Input
            2
            10 10 20 20
            15 15 25 25.5
            0
             

            Sample Output
            Test case #1
            Total explored area: 180.00 
                題目的意思是給定n個矩形的2n個坐標,求矩形的覆蓋面積。如果開一個大的bool數組,將覆蓋過的部分更新為true,再從頭到尾掃描一遍,在坐標范圍比較小的情況下,可以求解。但是如果坐標x,y的取值范圍很大,比如[-10^8,10^8],用上面這個方法就不能求解了;而且坐標還有可能是實數,上面的方法就更加不可行了,需要尋找一種新的解法,就是下面要說到的“離散化”。
                注意到要表示一個矩形,只需要知道其2個頂點的坐標就可以了(最左下,最右上)。可以用2個數組x[0...2n-1],y[0...2n-1]記錄下矩形Ri的2個坐標(x1,y1),(x2,y2),然后將數組x[0...xn-1],y[0...2n-1]排序,為下一步的掃描線作準備,這就是離散化的思想。這題還可以用線段樹做進一步優化,但是這里只介紹離散化的思想。
                看下面這個例子:有2個矩形(1,1),(3,3)和(2,2),(4,4)。如圖:
                圖中虛線表示掃描線,下一步工作只需要將這2個矩形覆蓋過的部分的bool數組的對應位置更新為true,接下去用掃描線從左到右,從上到下掃描一遍,就可以求出矩形覆蓋的總面積。
                這個圖對應的bool數組的值如下:
                1 1 0                       1 2 3
                1 1 1       <---->       4 5 6
                0 1 1                       7 8 9
             1 #include <iostream>
             2 #include <cmath>
             3 using namespace std;
             4 
             5 const int N = 101;
             6 const double eps = 1e-6;
             7 double ans,x[2*N],y[2*N];
             8 double pos[N][4];
             9 bool hash[2*N][2*N];
            10 
            11 int cmp(const void *a,const  void *b){
            12     double *aa = (double *)a;
            13     double *bb = (double *)b;
            14     if(fabs(*aa-*bb)<=eps) return 0;
            15     else if(*aa-*bb>0return 1;
            16     else return -1;
            17 }
            18 int main(){
            19     int i,j,k,n,x1,x2,y1,y2,ca=1;
            20     while(scanf("%d",&n),n){
            21         for(ans=i=k=0;i<n;i++,k+=2){
            22             scanf("%lf %lf %lf %lf",&pos[i][0],&pos[i][1],&pos[i][2],&pos[i][3]);
            23             x[k]=pos[i][0],y[k]=pos[i][1],x[k+1]=pos[i][2],y[k+1]=pos[i][3];
            24         }
            25         memset(hash,false,sizeof(hash));
            26         qsort(x,2*n,sizeof(x[0]),cmp);
            27         qsort(y,2*n,sizeof(y[0]),cmp);
            28         for(i=0;i<n;i++){
            29             for(k=0;fabs(x[k]-pos[i][0])>eps;k++); x1=k;
            30             for(k=0;fabs(y[k]-pos[i][1])>eps;k++); y1=k;
            31             for(k=0;fabs(x[k]-pos[i][2])>eps;k++); x2=k;
            32             for(k=0;fabs(y[k]-pos[i][3])>eps;k++); y2=k;
            33             for(j=x1;j<x2;j++for(k=y1;k<y2;k++)
            34                 hash[j][k]=true;
            35         }
            36         for(i=0;i<2*n-1;i++)
            37             for(j=0;j<2*n-1;j++)
            38                 ans+=hash[i][j]*(x[i+1]-x[i])*(y[j+1]-y[j]);            
            39         printf("Test case #%d\n",ca++);
            40         printf("Total explored area: %.2lf\n",ans);
            41         printf("\n");
            42     }
            43     return 0;
            44 }

            posted on 2009-04-26 19:43 極限定律 閱讀(730) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC

            <2012年6月>
            272829303112
            3456789
            10111213141516
            17181920212223
            24252627282930
            1234567

            導航

            統計

            常用鏈接

            留言簿(10)

            隨筆分類

            隨筆檔案

            友情鏈接

            搜索

            最新評論

            閱讀排行榜

            評論排行榜

            性做久久久久久免费观看| 狠狠色丁香久久婷婷综合_中| 久久亚洲私人国产精品| 无码超乳爆乳中文字幕久久| 丰满少妇人妻久久久久久| 久久99亚洲综合精品首页| 精品久久久一二三区| 嫩草影院久久国产精品| 国产精品久久久久久久人人看| 老色鬼久久亚洲AV综合| 热综合一本伊人久久精品| 久久国产乱子伦免费精品| 日韩久久久久中文字幕人妻| 99久久久精品免费观看国产| 欧美一区二区久久精品| 日本一区精品久久久久影院| 欧美日韩精品久久久久| 94久久国产乱子伦精品免费| 亚洲国产美女精品久久久久∴ | 97精品依人久久久大香线蕉97| 国产成人久久激情91| 久久人人爽人人爽人人av东京热| 欧美激情精品久久久久| 久久99热只有频精品8| 中文字幕久久精品无码| 一本大道久久香蕉成人网| 国产成人综合久久久久久| 九九99精品久久久久久| 久久久婷婷五月亚洲97号色| 亚洲人成无码www久久久| 久久综合伊人77777麻豆| 韩国三级中文字幕hd久久精品| 91麻精品国产91久久久久| 精品国产91久久久久久久a| 91久久精品国产91性色也| 亚洲国产精品久久| 国产成人精品久久一区二区三区| 久久96国产精品久久久| 日本精品久久久久中文字幕| 色偷偷888欧美精品久久久| 国产精自产拍久久久久久蜜|