• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            麒麟子

            ~~

            導航

            <2013年4月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            統計

            常用鏈接

            留言簿(12)

            隨筆分類

            隨筆檔案

            Friends

            WebSites

            積分與排名

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Directional Light Map(Directional Irradiance)

            Light Map是一個比較經典的技術,目前來說應該是一般游戲引擎中的標配,它很好的在一種擬全局光效果的質量和效率上做了中和。不過目前用的更多、質量更好的應該是Directional Light Map,它是原始LM的增強版,通過在預處理與實時還原中考量場景中表面的法向量進而增強效果。DLM的基本操作方法如下:

            • 在采樣點處把其半球空間中的輻射照度用某種方法進行采集并保存(比如離線的光線跟蹤);
            • 以某種方法存儲額外的、與該輻射照度相關的法線信息到光照貼圖中;
            • 實時渲染中通過光照貼圖對像素上的場景輻照度進行還原(結合光照信息與方向信息)。

            目前常用的DLM實現方法主要有三種:

            Radiosity Normal Maps

            該方法最早是在Valve的Source引擎中用的一種模式,它的原理應該是一種擬信號壓縮與重建的方法:

            • 在采樣點處選取三個正交的采樣方向作為基方向,采樣得到這些方向上的光照信息并保存(壓縮);
            • 實時渲染中通過三個方向及其上的光照值做為基函數,對實際表面法向上的光照值進行還原(重建)。

            其中的三個基方向(表面法向所在的局部切空間,如下圖示)分別為:

            對應的還原計算為:

            Valve的這種方法應該說還是很不錯的,雖然數學理論依據不太充分,但至少看起來效果很不錯,而且實現簡單,效率較高。不過其也會出現一些問題,那就是當法線的方向與采樣光照的主方向夾角較大(即與采樣切平面的夾角較小時)容易出現一些不太正確的光照還原。

            Dominant Directional Irradiance

            該方法的原理可以是看作將采樣點半球空間中的輻照信息處理為一個方向光(Directional Irradiance),這樣在實時渲染中就可以使用反射模型進行快速還原;其中的Dominant axis就可以看作是指該平行光的方向。其操作如下:

            • 外理采樣點外部輻照信息為:方向光(方向:L,顏色:CL);
            • 渲染中直接反射模型模型來還原 。

            比如使用Lambert模型時對應的還原計算為:

            另外,一般情況下也會使用方向貼圖的空閑的Alpha通道來存儲一個縮放因子,用其來控制該點上外部輻照度的方向性(即被dominant方向影響的力度)。當然,這里也可以使用其它更復雜的一些shading model來操作,不過Lambert已經足夠了。該方法的計算量相對也比較小;存儲空間也比較節省,只需要在傳統LM的基礎上再存儲一張方向貼圖就可以了(目前來說該方法較為流行,比如UE或Enlighten中就使用此方法)。

            Spherical Harmonics

            該方法與Radiosity Normal Map的方法類似(同樣與Light Probe的原理類似),只不過這里使用了理論與數學依據更為充分的球諧函數來實現外部輻射照度信息的壓縮與重建:

            • 把光照函數使用球諧函數進行變換存儲(壓縮);
            • 實時渲染中使用時直接利用SH重建進行還原即可(還原)。

            這種方法比上述兩種方法都更為高級,一般來說對于任意Normal上的照度信息都能正確還原,而且適應性較強,較為靈活;但同時有很大的缺點那就是存儲空間較大(其LM中每個Pixel中存儲的數據量相當于一個Light Probe對應的存儲的內容),因而其應用范圍就有所限制。

            下述是LM與DLM的簡單效果對比,差異還是相當明顯的:

            http://blog.csdn.net/bugrunner/article/details/7881819

            posted on 2013-04-01 00:11 麒麟子 閱讀(587) 評論(0)  編輯 收藏 引用

            久久九九亚洲精品| 99久久久久| 久久久久久久人妻无码中文字幕爆 | 久久综合伊人77777| 久久国产一区二区| 久久综合视频网站| 久久精品天天中文字幕人妻| 国产精品久久久久久久久鸭| 老司机午夜网站国内精品久久久久久久久| 欧美喷潮久久久XXXXx| 97精品伊人久久大香线蕉app| 国色天香久久久久久久小说| 久久se精品一区精品二区| 亚洲国产天堂久久久久久| 精品国产一区二区三区久久| 久久综合久久综合亚洲| 一本久久久久久久| 97精品国产97久久久久久免费| 久久精品无码专区免费青青| 亚洲国产成人精品91久久久| 久久久青草久久久青草| 亚洲综合伊人久久综合| 日本久久中文字幕| 久久久久九九精品影院| 久久综合综合久久狠狠狠97色88| 久久久免费观成人影院 | 99久久国产综合精品网成人影院| 久久久精品波多野结衣| 人人狠狠综合久久亚洲88| 久久久精品2019免费观看| 久久SE精品一区二区| 中文字幕无码av激情不卡久久| 久久精品www人人爽人人| 精品综合久久久久久97| 久久精品国产亚洲av麻豆图片| 国内精品久久久久久不卡影院| 天堂久久天堂AV色综合| 亚洲国产精品高清久久久| 人妻无码αv中文字幕久久| 久久亚洲欧美国产精品| 天天躁日日躁狠狠久久|