• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Fence Loops


            ???? 這題是求無向圖中的一個最小環(huán)的長度。
            ???? 主要思路是:因為邊都是直線,邊的兩點之間的最短距離必然是這個邊長。那么,再求一條到兩頂點的最短距徑,這個路徑與邊構成了一個環(huán)。這個環(huán)是包含該邊的最小環(huán)。枚舉一下所有邊,計算出最小環(huán)即可。對于每個邊,刪除該邊,然后計算兩頂點的最短路徑,再恢復該邊。
            ???? 但是這個圖的輸入是用邊表示的,一個難點就是將其轉換成用點表示。這里用邊的集合來表示一個點。然后用map<set<int>,int>來存儲某一邊對應的邊的編號。每找到一個新的頂點則分配一個新的編號。這部分主要通過函數(shù)get_vertex(set<int>&s)來實現(xiàn)。

            代碼如下:
            #include?<iostream>
            #include?
            <fstream>
            #include?
            <set>
            #include?
            <map>
            #include?
            <climits>
            #include?
            <cstring>

            using?namespace?std;

            ifstream?fin(
            "fence6.in");
            ofstream?fout(
            "fence6.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            struct?Edge{
            ????
            int?va,vb,len;
            };

            int?edge_num;
            int?vertex_num;
            int?graph[100][100];
            Edge?edges[
            100];

            int?get_vertex(set<int>&s)
            {
            ????
            static?map<set<int>,int>vertex;

            ????
            if(?vertex.find(s)?==?vertex.end()?){
            ????????vertex[s]?
            =?vertex_num;
            ????????
            return?vertex_num++;
            ????}
            else{
            ????????
            return?vertex[s];
            ????}
            }

            void?build_graph()
            {
            ????
            in>>edge_num;

            ????
            for(int?i=0;i<100;++i)
            ????????
            for(int?j=0;j<100;++j)
            ????????????graph[i][j]?
            =?INT_MAX/2;

            ????
            for(int?i=0;i<edge_num;++i){
            ????????
            int?edge,tmp,len;
            ????????
            int?left_num,right_num;
            ????????
            set<int>?s;
            ????????
            in>>edge>>len>>left_num>>right_num;
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<left_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?left_vertex?=?get_vertex(s);
            ????????s.clear();
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<right_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?right_vertex?=?get_vertex(s);
            ????????graph[left_vertex][right_vertex]?
            =?
            ????????????graph[right_vertex][left_vertex]?
            =?len;
            ????????edges[i].va?
            =?left_vertex;
            ????????edges[i].vb?
            =?right_vertex;
            ????????edges[i].len?
            =?len;
            ????}
            }

            int?shortest_path(int?va,int?vb)
            {
            ????
            int?shortest[100];
            ????
            bool?visited[100];

            ????memset(visited,
            0,sizeof(visited));
            ???
            ????
            for(int?i=0;i<vertex_num;++i){
            ????????shortest[i]?
            =?graph[va][i];
            ????}

            ????visited[va]?
            =?true;

            ????
            while(true){
            ????????
            int?m?=?-1;
            ????????
            for(int?i=0;i<vertex_num;++i){
            ??????????????
            if(!visited[i]){
            ????????????????
            if(m==-1||shortest[i]<shortest[m])
            ????????????????????m?
            =?i;
            ??????????????}
            ????????}
            ????????
            //沒有新加結點了
            ????????
            ????????visited[m]?
            =?true;

            ????????
            if(?m==vb?)
            ????????????
            return?shortest[vb];

            ????????
            for(int?i=0;i<vertex_num;++i){
            ????????????
            if(!visited[i])
            ????????????shortest[i]?
            =?min(shortest[i],shortest[m]+graph[m][i]);
            ????????}
            ????}
            }

            void?solve()
            {
            ????build_graph();

            ????
            int?best?=?INT_MAX;

            ????
            for(int?i=0;i<edge_num;++i){
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?INT_MAX/2;?
            ??????best?
            =?min(best,edges[i].len+shortest_path(edges[i].va,edges[i].vb)?);
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?edges[i].len;?
            ????}

            ????
            out<<best<<endl;
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Fence Loops

            The fences that surround Farmer Brown's collection of pastures have gotten out of control. They are made up of straight segments from 1 through 200 feet long that join together only at their endpoints though sometimes more than two fences join together at a given endpoint. The result is a web of fences enclosing his pastures. Farmer Brown wants to start to straighten things out. In particular, he wants to know which of the pastures has the smallest perimeter.

            Farmer Brown has numbered his fence segments from 1 to N (N = the total number of segments). He knows the following about each fence segment:

            • the length of the segment
            • the segments which connect to it at one end
            • the segments which connect to it at the other end.
            Happily, no fence connects to itself.

            Given a list of fence segments that represents a set of surrounded pastures, write a program to compute the smallest perimeter of any pasture. As an example, consider a pasture arrangement, with fences numbered 1 to 10 that looks like this one (the numbers are fence ID numbers):

                       1
            +---------------+
            |\ /|
            2| \7 / |
            | \ / |
            +---+ / |6
            | 8 \ /10 |
            3| \9 / |
            | \ / |
            +-------+-------+
            4 5

            The pasture with the smallest perimeter is the one that is enclosed by fence segments 2, 7, and 8.

            PROGRAM NAME: fence6

            INPUT FORMAT

            Line 1: N (1 <= N <= 100)
            Line 2..3*N+1:

            N sets of three line records:

            • The first line of each record contains four integers: s, the segment number (1 <= s <= N); Ls, the length of the segment (1 <= Ls <= 255); N1s (1 <= N1s <= 8) the number of items on the subsequent line; and N2sthe number of items on the line after that (1 <= N2s <= 8).
            • The second line of the record contains N1 integers, each representing a connected line segment on one end of the fence.
            • The third line of the record contains N2 integers, each representing a connected line segment on the other end of the fence.

            SAMPLE INPUT (file fence6.in)

            10
            1 16 2 2
            2 7
            10 6
            2 3 2 2
            1 7
            8 3
            3 3 2 1
            8 2
            4
            4 8 1 3
            3
            9 10 5
            5 8 3 1
            9 10 4
            6
            6 6 1 2
            5
            1 10
            7 5 2 2
            1 2
            8 9
            8 4 2 2
            2 3
            7 9
            9 5 2 3
            7 8
            4 5 10
            10 10 2 3
            1 6
            4 9 5

            OUTPUT FORMAT

            The output file should contain a single line with a single integer that represents the shortest surrounded perimeter.

            SAMPLE OUTPUT (file fence6.out)

            12




            posted on 2009-07-17 14:26 YZY 閱讀(598) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO圖論

            導航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統(tǒng)計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            国产69精品久久久久9999APGF| 国产精品久久亚洲不卡动漫| 久久乐国产精品亚洲综合| 久久久久97国产精华液好用吗| 伊人久久一区二区三区无码| 77777亚洲午夜久久多喷| 久久大香香蕉国产| 欧美久久一区二区三区| 伊人久久大香线焦AV综合影院| 99精品国产在热久久无毒不卡 | 久久人妻少妇嫩草AV蜜桃| 久久精品综合网| 日本精品久久久中文字幕| 久久免费大片| 亚洲一区二区三区日本久久九| 四虎国产精品成人免费久久| 久久精品国产99国产电影网 | 国产激情久久久久影院小草| 亚洲精品成人网久久久久久| 国产精品久久久亚洲| 无码任你躁久久久久久老妇App| 成人久久精品一区二区三区| 伊人久久大香线蕉成人| 欧美精品一本久久男人的天堂| 亚洲精品无码久久久久sm| 国产精品日韩欧美久久综合| 久久久精品人妻一区二区三区四| 亚洲精品无码久久不卡| 久久艹国产| 久久国产香蕉一区精品| 伊人久久综在合线亚洲2019 | 久久国产免费| 国产精品成人99久久久久91gav| 性色欲网站人妻丰满中文久久不卡| 亚洲精品久久久www| 午夜肉伦伦影院久久精品免费看国产一区二区三区 | 久久精品国产亚洲网站| 久久久亚洲欧洲日产国码二区| 伊人久久大香线蕉综合Av| 少妇无套内谢久久久久| 免费无码国产欧美久久18|