• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Beef McNuggets

            這題有些難。雖然知道是動態規劃題,但是不知道要開多大的數組,后來看analysis用一個256大小的數組循環使用,方法很巧妙。
            先將box進行排序。
            如果box里面的數的最大公約數不為1的話,那么所有組成的數,只可能是這個公約數的倍數,因此沒有上限,輸出為0.
            用last記錄最小的“不能組成的數”。這樣當last之后有boxs[0]個連續數都可以組成的話,那么所有的數都可以組成。
            last+1...last+box[0]可以組成的話,那么每個數都加一個box[0],那么新一輪的box[0]個數也可以組成,以此類推。

            #include?<iostream>
            #include?
            <fstream>

            using?namespace?std;

            ifstream?fin(
            "nuggets.in");
            ofstream?fout(
            "nuggets.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            int?box_num;
            int?boxs[10];

            bool?ok[256];

            int?gcd(int?a,int?b)
            {
            ????
            if(a<b)?swap(a,b);

            ????
            int?tmp;

            ????
            while(b!=0){
            ????????tmp?
            =?a;
            ????????a?
            =?b;
            ????????b?
            =?tmp%b;
            ????}

            ????
            return?a;
            }

            void?solve()
            {

            ????
            in>>box_num;
            ????
            for(int?i=0;i<box_num;++i)
            ????????
            in>>boxs[i];

            ????sort(
            &boxs[0],&boxs[box_num]);
            ????
            ????
            int?t?=?boxs[0];

            ????
            for(int?i=1;i<box_num;++i){
            ????????t?
            =?gcd(t,boxs[i]);
            ????}

            ????
            if(t!=1){
            ????????
            out<<0<<endl;
            ????????
            return;
            ????}

            ????memset(ok,
            0,sizeof(ok));

            ????
            int?last?=?0;
            ????ok[
            0]?=?true;
            ????
            int?i=0;

            ????
            while(true){
            ????????
            if(ok[i%256]){
            ????????????ok[i
            %256]?=?0;
            ????????????
            if(i-last>=boxs[0]){
            ????????????????
            out<<last<<endl;
            ????????????????
            return;
            ????????????}
            ????????????
            for(int?x=0;x<box_num;++x){
            ????????????????ok[(i
            +boxs[x])%256]?=?true;
            ????????????}
            ????????}
            else{
            ????????????last?
            =?i;
            ????????}
            ????????
            ++i;
            ????}
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Beef McNuggets

            Hubert Chen

            Farmer Brown's cows are up in arms, having heard that McDonalds is considering the introduction of a new product: Beef McNuggets. The cows are trying to find any possible way to put such a product in a negative light.

            One strategy the cows are pursuing is that of `inferior packaging'. ``Look,'' say the cows, ``if you have Beef McNuggets in boxes of 3, 6, and 10, you can not satisfy a customer who wants 1, 2, 4, 5, 7, 8, 11, 14, or 17 McNuggets. Bad packaging: bad product.''

            Help the cows. Given N (the number of packaging options, 1 <= N <= 10), and a set of N positive integers (1 <= i <= 256) that represent the number of nuggets in the various packages, output the largest number of nuggets that can not be purchased by buying nuggets in the given sizes. Print 0 if all possible purchases can be made or if there is no bound to the largest number.

            The largest impossible number (if it exists) will be no larger than 2,000,000,000.

            PROGRAM NAME: nuggets

            INPUT FORMAT

            Line 1: N, the number of packaging options
            Line 2..N+1: The number of nuggets in one kind of box

            SAMPLE INPUT (file nuggets.in)

            3
            3
            6
            10

            OUTPUT FORMAT

            The output file should contain a single line containing a single integer that represents the largest number of nuggets that can not be represented or 0 if all possible purchases can be made or if there is no bound to the largest number.

            SAMPLE OUTPUT (file nuggets.out)

            17

            posted on 2009-07-12 14:58 YZY 閱讀(649) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO動態規劃

            導航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            一本色道久久88精品综合| 久久国产精品无码HDAV| 久久亚洲精品成人无码网站 | 久久本道久久综合伊人| 国产精品成人久久久| 亚洲国产精品热久久| 久久久久高潮综合影院| 久久毛片免费看一区二区三区| 久久人人爽人人爽人人片av高请| 99久久精品国产一区二区三区 | 亚洲午夜久久影院| 亚洲AV成人无码久久精品老人| 久久久久久青草大香综合精品| 国产精品久久久久无码av| 亚洲欧美一区二区三区久久| 99久久精品国产一区二区蜜芽| 精品久久久久久国产潘金莲 | 久久亚洲高清观看| 久久久久久毛片免费播放| 中文字幕无码久久久| 久久久久久无码国产精品中文字幕| 99久久人妻无码精品系列| 伊人色综合久久天天人手人婷| 四虎国产精品成人免费久久| 久久精品国产亚洲7777| 国产精品欧美久久久久天天影视| WWW婷婷AV久久久影片| 精品久久久久久成人AV| 青草国产精品久久久久久| 99久久精品免费看国产一区二区三区 | 66精品综合久久久久久久| 狠色狠色狠狠色综合久久| 2021久久国自产拍精品| 久久超乳爆乳中文字幕| 99热成人精品热久久669| 91精品国产综合久久精品| 久久免费精品一区二区| 91久久精品无码一区二区毛片| 欧美综合天天夜夜久久| 久久久久亚洲av成人无码电影| 无码8090精品久久一区|