• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Beef McNuggets

            這題有些難。雖然知道是動態規劃題,但是不知道要開多大的數組,后來看analysis用一個256大小的數組循環使用,方法很巧妙。
            先將box進行排序。
            如果box里面的數的最大公約數不為1的話,那么所有組成的數,只可能是這個公約數的倍數,因此沒有上限,輸出為0.
            用last記錄最小的“不能組成的數”。這樣當last之后有boxs[0]個連續數都可以組成的話,那么所有的數都可以組成。
            last+1...last+box[0]可以組成的話,那么每個數都加一個box[0],那么新一輪的box[0]個數也可以組成,以此類推。

            #include?<iostream>
            #include?
            <fstream>

            using?namespace?std;

            ifstream?fin(
            "nuggets.in");
            ofstream?fout(
            "nuggets.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            int?box_num;
            int?boxs[10];

            bool?ok[256];

            int?gcd(int?a,int?b)
            {
            ????
            if(a<b)?swap(a,b);

            ????
            int?tmp;

            ????
            while(b!=0){
            ????????tmp?
            =?a;
            ????????a?
            =?b;
            ????????b?
            =?tmp%b;
            ????}

            ????
            return?a;
            }

            void?solve()
            {

            ????
            in>>box_num;
            ????
            for(int?i=0;i<box_num;++i)
            ????????
            in>>boxs[i];

            ????sort(
            &boxs[0],&boxs[box_num]);
            ????
            ????
            int?t?=?boxs[0];

            ????
            for(int?i=1;i<box_num;++i){
            ????????t?
            =?gcd(t,boxs[i]);
            ????}

            ????
            if(t!=1){
            ????????
            out<<0<<endl;
            ????????
            return;
            ????}

            ????memset(ok,
            0,sizeof(ok));

            ????
            int?last?=?0;
            ????ok[
            0]?=?true;
            ????
            int?i=0;

            ????
            while(true){
            ????????
            if(ok[i%256]){
            ????????????ok[i
            %256]?=?0;
            ????????????
            if(i-last>=boxs[0]){
            ????????????????
            out<<last<<endl;
            ????????????????
            return;
            ????????????}
            ????????????
            for(int?x=0;x<box_num;++x){
            ????????????????ok[(i
            +boxs[x])%256]?=?true;
            ????????????}
            ????????}
            else{
            ????????????last?
            =?i;
            ????????}
            ????????
            ++i;
            ????}
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Beef McNuggets

            Hubert Chen

            Farmer Brown's cows are up in arms, having heard that McDonalds is considering the introduction of a new product: Beef McNuggets. The cows are trying to find any possible way to put such a product in a negative light.

            One strategy the cows are pursuing is that of `inferior packaging'. ``Look,'' say the cows, ``if you have Beef McNuggets in boxes of 3, 6, and 10, you can not satisfy a customer who wants 1, 2, 4, 5, 7, 8, 11, 14, or 17 McNuggets. Bad packaging: bad product.''

            Help the cows. Given N (the number of packaging options, 1 <= N <= 10), and a set of N positive integers (1 <= i <= 256) that represent the number of nuggets in the various packages, output the largest number of nuggets that can not be purchased by buying nuggets in the given sizes. Print 0 if all possible purchases can be made or if there is no bound to the largest number.

            The largest impossible number (if it exists) will be no larger than 2,000,000,000.

            PROGRAM NAME: nuggets

            INPUT FORMAT

            Line 1: N, the number of packaging options
            Line 2..N+1: The number of nuggets in one kind of box

            SAMPLE INPUT (file nuggets.in)

            3
            3
            6
            10

            OUTPUT FORMAT

            The output file should contain a single line containing a single integer that represents the largest number of nuggets that can not be represented or 0 if all possible purchases can be made or if there is no bound to the largest number.

            SAMPLE OUTPUT (file nuggets.out)

            17

            posted on 2009-07-12 14:58 YZY 閱讀(639) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm 、USACO動態規劃

            導航

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            97久久精品人人澡人人爽 | 99久久精品免费观看国产| 色婷婷综合久久久久中文| 久久免费视频网站| 性做久久久久久久久老女人| 国内精品久久国产| 国产精品免费久久久久久久久| 欧美久久一级内射wwwwww.| 精品蜜臀久久久久99网站| 久久久久99精品成人片| 久久人爽人人爽人人片AV | 国产精品久久久久AV福利动漫| 久久亚洲欧美日本精品| 久久精品极品盛宴观看| 久久精品成人欧美大片| 狠狠色综合网站久久久久久久高清| 热re99久久精品国产99热| 2020久久精品国产免费| 久久天天躁狠狠躁夜夜躁2014| 2020最新久久久视精品爱| 久久精品国产亚洲AV无码麻豆| 中文国产成人精品久久亚洲精品AⅤ无码精品| 久久精品国产亚洲av麻豆色欲| 久久综合色老色| 亚洲欧美另类日本久久国产真实乱对白 | 久久久久久精品免费免费自慰| 久久黄视频| 国产成人久久精品麻豆一区| www久久久天天com| 99久久成人国产精品免费| 精品熟女少妇a∨免费久久| 99久久精品免费看国产一区二区三区 | 久久青草国产精品一区| 精品国产一区二区三区久久久狼 | 亚洲一区中文字幕久久| 久久亚洲国产欧洲精品一| 伊人久久大香线蕉影院95| 国产成人精品久久一区二区三区av| 久久福利青草精品资源站免费| 久久99精品国产麻豆| 久久免费小视频|