• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Beef McNuggets

            這題有些難。雖然知道是動(dòng)態(tài)規(guī)劃題,但是不知道要開多大的數(shù)組,后來看analysis用一個(gè)256大小的數(shù)組循環(huán)使用,方法很巧妙。
            先將box進(jìn)行排序。
            如果box里面的數(shù)的最大公約數(shù)不為1的話,那么所有組成的數(shù),只可能是這個(gè)公約數(shù)的倍數(shù),因此沒有上限,輸出為0.
            用last記錄最小的“不能組成的數(shù)”。這樣當(dāng)last之后有boxs[0]個(gè)連續(xù)數(shù)都可以組成的話,那么所有的數(shù)都可以組成。
            last+1...last+box[0]可以組成的話,那么每個(gè)數(shù)都加一個(gè)box[0],那么新一輪的box[0]個(gè)數(shù)也可以組成,以此類推。

            #include?<iostream>
            #include?
            <fstream>

            using?namespace?std;

            ifstream?fin(
            "nuggets.in");
            ofstream?fout(
            "nuggets.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            int?box_num;
            int?boxs[10];

            bool?ok[256];

            int?gcd(int?a,int?b)
            {
            ????
            if(a<b)?swap(a,b);

            ????
            int?tmp;

            ????
            while(b!=0){
            ????????tmp?
            =?a;
            ????????a?
            =?b;
            ????????b?
            =?tmp%b;
            ????}

            ????
            return?a;
            }

            void?solve()
            {

            ????
            in>>box_num;
            ????
            for(int?i=0;i<box_num;++i)
            ????????
            in>>boxs[i];

            ????sort(
            &boxs[0],&boxs[box_num]);
            ????
            ????
            int?t?=?boxs[0];

            ????
            for(int?i=1;i<box_num;++i){
            ????????t?
            =?gcd(t,boxs[i]);
            ????}

            ????
            if(t!=1){
            ????????
            out<<0<<endl;
            ????????
            return;
            ????}

            ????memset(ok,
            0,sizeof(ok));

            ????
            int?last?=?0;
            ????ok[
            0]?=?true;
            ????
            int?i=0;

            ????
            while(true){
            ????????
            if(ok[i%256]){
            ????????????ok[i
            %256]?=?0;
            ????????????
            if(i-last>=boxs[0]){
            ????????????????
            out<<last<<endl;
            ????????????????
            return;
            ????????????}
            ????????????
            for(int?x=0;x<box_num;++x){
            ????????????????ok[(i
            +boxs[x])%256]?=?true;
            ????????????}
            ????????}
            else{
            ????????????last?
            =?i;
            ????????}
            ????????
            ++i;
            ????}
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Beef McNuggets

            Hubert Chen

            Farmer Brown's cows are up in arms, having heard that McDonalds is considering the introduction of a new product: Beef McNuggets. The cows are trying to find any possible way to put such a product in a negative light.

            One strategy the cows are pursuing is that of `inferior packaging'. ``Look,'' say the cows, ``if you have Beef McNuggets in boxes of 3, 6, and 10, you can not satisfy a customer who wants 1, 2, 4, 5, 7, 8, 11, 14, or 17 McNuggets. Bad packaging: bad product.''

            Help the cows. Given N (the number of packaging options, 1 <= N <= 10), and a set of N positive integers (1 <= i <= 256) that represent the number of nuggets in the various packages, output the largest number of nuggets that can not be purchased by buying nuggets in the given sizes. Print 0 if all possible purchases can be made or if there is no bound to the largest number.

            The largest impossible number (if it exists) will be no larger than 2,000,000,000.

            PROGRAM NAME: nuggets

            INPUT FORMAT

            Line 1: N, the number of packaging options
            Line 2..N+1: The number of nuggets in one kind of box

            SAMPLE INPUT (file nuggets.in)

            3
            3
            6
            10

            OUTPUT FORMAT

            The output file should contain a single line containing a single integer that represents the largest number of nuggets that can not be represented or 0 if all possible purchases can be made or if there is no bound to the largest number.

            SAMPLE OUTPUT (file nuggets.out)

            17

            posted on 2009-07-12 14:58 YZY 閱讀(646) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO動(dòng)態(tài)規(guī)劃

            導(dǎo)航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統(tǒng)計(jì)

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            久久av无码专区亚洲av桃花岛| 久久精品www人人爽人人| 久久久久这里只有精品 | 久久人人爽人人精品视频| 一本久道久久综合狠狠躁AV| 亚洲精品乱码久久久久久久久久久久 | 久久噜噜久久久精品66| 亚洲精品美女久久777777| 9191精品国产免费久久| 久久精品久久久久观看99水蜜桃| 久久se精品一区二区| 国产69精品久久久久9999APGF| 丁香五月网久久综合| 久久婷婷五月综合国产尤物app | 日韩电影久久久被窝网| 国产精品久久久久无码av| 亚洲午夜福利精品久久| 精品无码久久久久久久久久| 久久天天躁狠狠躁夜夜96流白浆 | 久久久午夜精品| 久久国产免费直播| 日韩一区二区久久久久久| 777午夜精品久久av蜜臀| 亚洲精品高清一二区久久| 国产精品免费福利久久| 成人午夜精品无码区久久| 亚洲精品综合久久| 久久国产精品国语对白| Xx性欧美肥妇精品久久久久久 | 性高朝久久久久久久久久| 久久精品国产WWW456C0M| 久久99热国产这有精品| 国产美女久久精品香蕉69| 成人国内精品久久久久影院| 久久久久高潮毛片免费全部播放 | 国产精品九九久久免费视频 | 久久久久久久波多野结衣高潮 | 久久精品亚洲男人的天堂| 久久亚洲高清综合| 久久只有这精品99| 欧美熟妇另类久久久久久不卡|