青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品


姚明,81年,97年開始接觸電腦,6年的編程學習經歷, 曾有4年工作經驗,最終轉向基礎理論學習和研究, 現華中理工科技大學在讀,有志于圖形學領域工作發展

EMAIL:alanvincentmail@gmail.com QQ:31547735

隨筆分類(34)

文章分類(99)

相冊

收藏夾(6)

編程技術網站

出國留學網站

數學資源網站

圖形學網站

英語資源網站

自由職業者

搜索

  •  

最新評論

Symbol
Name Explanation Examples
Read as
Category
=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere


<>

!=
inequation x ≠ y means that x and y do not represent the same thing or value.

(The symbols != and <> are primarily from computer science. They are avoided in mathematical texts.)
1 ≠ 2
is not equal to; does not equal
everywhere
<

>

?

?
strict inequality x < y means x is less than y.

x > y means x is greater than y.

x ? y means x is much less than y.

x ? y means x is much greater than y.
3 < 4
5 > 4.

0.003 ? 1000000

is less than, is greater than, is much less than, is much greater than
order theory

<=


>=
inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.

(The symbols <= and >= are primarily from computer science. They are avoided in mathematical texts.)
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to; varies as
everywhere
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1 = {1, 2, 3, 4} ∧ A2 = {2, 4, 5, 7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of ... and ...
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B.

? can also be used for set-theoretic complement as described below.
{1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of ... and ...; the direct product of ... and ...
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
·
multiplication 3 · 4 means the multiplication of 3 by 4. 7 · 8 = 56
times
arithmetic
dot product u · v means the dot product of vectors u and v (1,2,5) · (3,4,−1) = 6
dot
vector algebra
÷

division 6 ÷ 3 or 6 ⁄ 3 means the division of 6 by 3. 2 ÷ 4 = .5

12 ⁄ 4 = 3
divided by
arithmetic
±
plus-minus 6 ± 3 means both 6 + 3 and 6 - 3. The equation x = 5 ± √4, has two solutions, x = 7 and x = 3.
plus or minus
arithmetic
plus-minus 10 ± 2 or eqivalently 10 ± 20% means the range from 10 − 2 to 10 + 2. If a = 100 ± 1 mm, then a is ≥ 99 mm and ≤ 101 mm.
plus or minus
measurement
?
minus-plus 6 ± (3 ? 5) means both 6 + (3 - 5) and 6 - (3 + 5). cos(x ± y) = cos(x) cos(y) ? sin(x) sin(y).
minus or plus
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(i φ/2). √(-1) = i
the complex square root of …

square root
complex numbers
|…|
absolute value or modulus |x| means the distance along the real line (or across the complex plane) between x and zero. |3| = 3

|–5| = |5|

i | = 1

| 3 + 4i | = 5
absolute value (modulus) of
numbers
Euclidean distance |x – y| means the Euclidean distance between x and y. For x = (1,1), and y = (4,5),
|x – y| = √([1–4]2 + [1–5]2) = 5
Euclidean distance between; Euclidean norm of
Geometry
Determinant |A| means the determinant of the matrix A <math>\begin{vmatrix}
1&2 \\ 2&4 \\

\end{vmatrix} = 0</math>

determinant of
Matrix theory
|
divides A single vertical bar is used to denote divisibility.
a|b means a divides b.
Since 15 = 3×5, it is true that 3|15 and 5|15.
divides
Number Theory
!
factorial n ! is the product 1 × 2× ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
T
transpose Swap rows for columns <math>A_{ij} = (A^T)_{ji}</math>
transpose
matrix operations
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics
Row equivalence A~B means that B can be generated by using a series of elementary row operations on A <math>\begin{bmatrix}
1&2 \\ 2&4 \\

\end{bmatrix} \sim \begin{bmatrix}

1&2 \\ 0&0 \\

\end{bmatrix}</math>

is row equivalent to
Matrix theory




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if … then
propositional logic, Heyting algebra


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.

(The symbol ~ has many other uses, so ¬ or the slash notation is preferred.)
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false.

For functions A(x) and B(x), A(x) ∧ B(x) is used to mean min(A(x), B(x)).
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and; min
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false.

For functions A(x) and B(x), A(x) ∨ B(x) is used to mean max(A(x), B(x)).
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or; max
propositional logic, lattice theory



?
exclusive or The statement AB is true when either A or B, but not both, are true. A ? B means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
direct sum The direct sum is a special way of combining several modules into one general module (the symbol ⊕ is used, ? is only for logic).

Most commonly, for vector spaces U, V, and W, the following consequence is used:
U = VW ⇔ (U = V + W) ∧ (VW = )
direct sum of
Abstract algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ ?: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ?: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ?: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y

(Some writers useto mean congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A xor B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
congruence △ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.
is congruent to
geometry
congruence relation a ≡ b (mod n) means a − b is divisible by n 5 ≡ 11 (mod 3)
... is congruent to ... modulo ...
modular arithmetic
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. ? = { 1, 2, 3, …}
the set of …
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ ? : n2 < 20} = { 1, 2, 3, 4}
the set of … such that
set theory


{ }
empty set means the set with no elements. { } means the same. {n ∈ ? : 1 < n2 < 4} =
the empty set
set theory
set membership a ∈ S means a is an element of the set S; a Template:Notin S means a is not an element of S. (1/2)−1 ∈ ?

2−1 Template:Notin ?
is an element of; is not an element of
everywhere, set theory


subset (subset) A ⊆ B means every element of A is also element of B.

(proper subset) A ⊂ B means A ⊆ B but A ≠ B.

(Some writers use the symbol ⊂ as if it were the same as ⊆.)
(A ∩ B) ⊆ A

? ⊂ ?

? ⊂ ?
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.

(Some writers use the symbol ⊃ as if it were the same as ⊇.)
(A ∪ B) ⊇ B

? ⊃ ?
is a superset of
set theory
set-theoretic union (exclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, but not both.
"A or B, but not both."

(inclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, or all the elements from both A and B.
"A or B or both".
A ⊆ B  ⇔  (A ∪ B) = B (inclusive)
the union of … and …

union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ ? : x2 = 1} ∩ ? = {1}
intersected with; intersect
set theory
<math>\Delta</math>
symmetric difference <math> A\Delta B</math> means the set of elements in exactly one of A or B. {1,5,6,8} <math>\Delta</math> {2,5,8} = {1,2,6}
symmetric difference
set theory
?
set-theoretic complement A ? B means the set that contains all those elements of A that are not in B.

− can also be used for set-theoretic complement as described above.
{1,2,3,4} ? {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
parentheses
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let f: ? → ? be defined by f(x) := x2.
from … to
set theory,type theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) := 2x, and g(x) := x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory
?

N
natural numbers N means { 1, 2, 3, ...}, but see the article on natural numbers for a different convention. ? = {|a| : a ∈ ?, a ≠ 0}
N
numbers
?

Z
integers ? means {..., −3, −2, −1, 0, 1, 2, 3, ...} and ?+ means {1, 2, 3, ...} = ?. ? = {p, -p : p ∈ ?} ∪ {0}
Z
numbers
?

Q
rational numbers ? means {p/q : p ∈ ?, q ∈ ?}. 3.14000... ∈ ?

π ∉ ?
Q
numbers
?

R
real numbers ? means the set of real numbers. π ∈ ?

√(−1) ∉ ?
R
numbers
?

C
complex numbers ? means {a + b i : a,b ∈ ?}. i = √(−1) ∈ ?
C
numbers
arbitrary constant C can be any number, most likely unknown; usually occurs when calculating antiderivatives. if f(x) = 6x² + 4x, then F(x) = 2x³ + 2x² + C, where F'(x) = f(x)
C
integral calculus
??

K
real or complex numbers K means the statement holds substituting K for R and also for C.
<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{K}</math>

because

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{R}</math>

and

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{C}</math>.
K
linear algebra
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. <math>\lim_{x\to 0} \frac{1}{|x|} = \infty</math>
infinity
numbers
||…||
norm || x || is the norm of the element x of a normed vector space. || x  + y || ≤  || x ||  +  || y ||
norm of

length of
linear algebra
summation

<math>\sum_{k=1}^{n}{a_k}</math> means a1 + a2 + … + an.

<math>\sum_{k=1}^{4}{k^2}</math> = 12 + 22 + 32 + 42 

= 1 + 4 + 9 + 16 = 30
sum over … from … to … of
arithmetic
product

<math>\prod_{k=1}^na_k</math> means a1a2···an.

<math>\prod_{k=1}^4(k+2)</math> = (1+2)(2+2)(3+2)(4+2)

= 3 × 4 × 5 × 6 = 360
product over … from … to … of
arithmetic
Cartesian product

<math>\prod_{i=0}^{n}{Y_i}</math> means the set of all (n+1)-tuples

(y0, …, yn).

<math>\prod_{n=1}^{3}{\mathbb{R}} = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \mathbb{R}^3</math>

the Cartesian product of; the direct product of
set theory
?
coproduct
coproduct over … from … to … of
category theory


derivative f ′(x) is the derivative of the function f at the point x, i.e., the slope of the tangent to f at x.

The dot notation indicates a time derivative. That is <math>\dot{x}(t)=\frac{\partial}{\partial t}x(t)</math>.

If f(x) := x2, then f ′(x) = 2x
… prime

derivative of
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of

the antiderivative of
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from … to … of … with respect to
calculus
contour integral or closed line integral Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations regarding , and while these formulas involve a closed surface integral, the representations describe only the first integration of the volume over the enclosing surface. Instances where the latter requires simultaneous double integration, the symbol ? would be more appropriate. A third related symbol is the closed volume integral, denoted by the symbol ?.

The contour integral can also frequently be found with a subscript capital letter C, ∮C, denoting that a closed loop integral is, in fact, around a contour C, or sometimes dually appropriately, a circle C. In representations of Gauss's Law, a subscript capital S, ∮S, is used to denote that the integration is over a closed surface.

contour integral of
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (∂f / ∂x1, …, ∂f / ∂xn). If f (x,y,z) := 3xy + z², then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
vector calculus
divergence <math> \nabla \cdot \vec v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla \cdot \vec v = 3y + 2yz </math>.
del dot, divergence of
vector calculus
curl <math> \nabla \times \vec v = \left( {\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \mathbf{i} + \left( {\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \mathbf{j} + \left( {\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \mathbf{k} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla\times\vec v = -y^2\mathbf{i} - 3x\mathbf{k} </math>.
curl of
vector calculus
partial differential With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) := x2y, then ∂f/∂x = 2xy
partial, d
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
||
parallel x || y means x is parallel to y. If l || m and mn then ln.
is parallel to
geometry
?
entailment A ? B means the sentence A entails the sentence B, that is in every model in which A is true, B is also true. A ? A ∨ ¬A
entails
model theory
?
inference x ? y means y is derived from x. AB ? ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
?
normal subgroup N ? G means that N is a normal subgroup of group G. Z(G) ? G
is a normal subgroup of
group theory
/
quotient group G/H means the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
quotient set A/~ means the set of all ~ equivalence classes in A. If we define ~ by x~y ⇔ x-y∈Z, then
R/~ = {{x+n : nZ} : x ∈ (0,1]}
mod
set theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equal to y π ≈ 3.14159
is approximately equal to
everywhere
~
same order of magnitude m ~ n, means the quantities m and n have the general size.

(Note that ~ is used for an approximation that is poor, otherwise use ≈ .)
2 ~ 5

8 × 9 ~ 100

but π2 ≈ 10
roughly similar

poorly approximates
Approximation theory


〈,〉

( | )

< , >

·

:
inner product x,y〉 means the inner product of x and y as defined in an inner product space.

For spatial vectors, the dot product notation, x·y is common.
For matricies, the colon notation may be used.

The standard inner product between two vectors x = (2, 3) and y = (−1, 5) is:
〈x, y〉 = 2×−1 + 3×5 = 13

<math>A:B = \sum_{i,j} A_{ij}B_{ij}</math>

inner product of
linear algebra
tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,2} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 4, 6, 8}}
tensor product of
linear algebra
*
convolution f * g means the convolution of f and g. <math>(f * g )(t) = \int f(\tau) g(t - \tau)\, d\tau</math>
convolution, convoluted with
functional analysis
<math>\bar{x}</math>
mean <math>\bar{x}</math> (often read as "x bar") is the mean (average value of <math>x_i</math>). <math>x = \{1,2,3,4,5\}; \bar{x} = 3</math>.
overbar, … bar
statistics
<math> \overline{z} </math>
complex conjugate <math> \overline{z} </math> is the complex conjugate of z. <math> \overline{3+4i} = 3-4i </math>
conjugate
complex numbers
<math>\triangleq</math>
delta equal to <math>\triangleq</math> means equal by definition. When <math>\triangleq</math> is used, equality is not true generally, but rather equality is true under certain assumptions that are taken in context. Some writers prefer ≡. <math>p(x_1,x_2,...,x_n) \triangleq \prod_{i=1}^n p(x_i | x_{\pi_i})</math>.
equal by definition
everywhere
posted on 2007-10-28 04:12 姚明 閱讀(1398) 評論(1)  編輯 收藏 引用 所屬分類: 高等數學

FeedBack:
# re: 數學符號表(3) 2007-11-26 12:53 蘆婷婷
∮中文 ,算是怎么寫來著?  回復  更多評論
  
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              欧美成人精品在线观看| 国产精品揄拍500视频| 老司机精品福利视频| 亚洲中无吗在线| 亚洲午夜精品一区二区三区他趣| 在线电影一区| 在线日韩av片| 亚洲第一区色| 精品1区2区3区4区| 国产精品成人免费| 国产精品av免费在线观看| 欧美午夜a级限制福利片| 欧美精品1区2区| 欧美另类videos死尸| 久久男人资源视频| 蜜桃精品一区二区三区| 欧美1级日本1级| 欧美激情日韩| 欧美日韩一视频区二区| 国产精品v片在线观看不卡 | 亚洲午夜精品网| 亚洲一级黄色| 午夜亚洲视频| 久久综合久久综合久久综合| 亚洲电影在线播放| 亚洲精品久久久一区二区三区| 亚洲激情精品| 欧美一级视频| 欧美日韩精选| 在线不卡免费欧美| 亚洲欧美另类综合偷拍| 欧美二区在线观看| 性娇小13――14欧美| 欧美国产日韩一区二区在线观看| 国产精品日韩久久久久| 在线日韩视频| 亚洲男人第一网站| 亚洲国产一区二区精品专区| 久久国产精品一区二区| 国产精品都在这里| 亚洲精品人人| 欧美成人情趣视频| 午夜在线一区| 国产精品成人在线观看| 亚洲精品一区二区三| 麻豆成人av| 亚洲欧美日韩视频二区| 欧美日本久久| 亚洲激情成人| 亚洲欧美日韩另类精品一区二区三区| 亚洲香蕉成视频在线观看| 久久国产精品一区二区| 欧美在线亚洲综合一区| 久久婷婷麻豆| 激情久久久久| 亚洲激情精品| 国产精品乱码一区二三区小蝌蚪| 亚洲精品色婷婷福利天堂| 日韩亚洲欧美成人一区| 亚洲欧美国产精品va在线观看| 欧美在线观看一二区| 你懂的成人av| 亚洲天堂成人在线观看| 欧美成人第一页| 久久免费偷拍视频| 欧美日韩在线视频观看| 国产综合在线视频| 亚洲午夜精品在线| 美女黄色成人网| 校园激情久久| 久久av红桃一区二区小说| 欧美国产激情| 国产一区二区日韩| 亚洲一区二区免费看| 免费欧美在线| 亚洲欧美在线x视频| 欧美精品免费在线| 国内偷自视频区视频综合| 国产精品久久久久一区二区三区共| 亚洲婷婷免费| 亚洲国产精品t66y| 久久精品一二三| 国产精品久久久久久久久果冻传媒| 精品成人一区二区三区| 亚洲一区在线看| 亚洲精品自在在线观看| 久久午夜激情| 韩国av一区二区三区在线观看 | 亚洲色诱最新| 日韩一级大片| 亚洲在线成人| 欧美日韩午夜在线视频| 亚洲成人中文| 久久久久久一区二区三区| 一本色道88久久加勒比精品| 免费中文字幕日韩欧美| 狠狠色综合网站久久久久久久| 欧美一区二区高清| 中文一区二区| 欧美日韩亚洲国产精品| 日韩午夜电影| 亚洲肉体裸体xxxx137| 免费日韩一区二区| 91久久视频| 久久成人18免费网站| 国产精品自拍在线| 欧美在线播放高清精品| 亚洲欧美国产三级| 国产老女人精品毛片久久| 欧美与黑人午夜性猛交久久久| 亚洲一区二区三区欧美| 国产一区二区高清不卡| 久久久www成人免费无遮挡大片 | 翔田千里一区二区| 亚洲一区二区三区精品视频| 国产精品久久久一区麻豆最新章节 | 亚洲美女啪啪| 久久久久国产精品一区二区| 久久精品免视看| 久久国产一区二区| 国产日韩欧美夫妻视频在线观看| 在线成人中文字幕| 欧美电影在线播放| 欧美黑人多人双交| 黄色综合网站| 一片黄亚洲嫩模| 欧美视频在线播放| 亚洲黄色三级| 久久国产精品久久久| 亚洲国产精品激情在线观看| 亚洲国产99| 欧美视频福利| 久久精品国产久精国产思思| 亚洲精品中文字幕在线观看| 亚洲欧洲日本在线| 在线一区欧美| 国产在线麻豆精品观看| 亚洲高清毛片| 国产精品每日更新在线播放网址| 亚洲韩国精品一区| 久久不射电影网| 一区在线视频观看| 久久九九全国免费精品观看| 国产精品婷婷| 亚洲欧洲精品一区二区三区不卡| 国产一区二区三区av电影| 久久久久看片| 亚洲影院免费观看| 欧美一区二区三区精品电影| 久久亚洲色图| 午夜精品久久久久99热蜜桃导演| 欧美一级理论片| 久久亚洲私人国产精品va媚药| 久久免费一区| 欧美一级一区| 久久久久久久久久码影片| 亚洲一区二区三区精品动漫| 亚洲一区在线观看免费观看电影高清| 免费观看在线综合| 亚洲人成小说网站色在线| 国产亚洲成精品久久| 久久精品国产91精品亚洲| 在线亚洲免费| 欧美精品一区二区精品网| 欧美亚洲综合久久| 欧美日韩国产综合久久| 久久亚洲精品一区| 欧美与黑人午夜性猛交久久久| 国产亚洲福利社区一区| 亚洲国产精品高清久久久| 亚洲欧美日本在线| 欧美中文字幕在线视频| 久久久久久久999精品视频| 欧美区在线播放| 国产一区二区丝袜高跟鞋图片| 六十路精品视频| 久久天天狠狠| 欧美日本国产一区| 欧美v日韩v国产v| 国产欧美亚洲日本| 欧美激情四色| 国产精品www色诱视频| 欧美成熟视频| 国产亚洲一区在线| 亚洲欧美精品在线| 国产精品电影在线观看| 亚洲经典自拍| 日韩西西人体444www| 久久成人这里只有精品| 欧美亚洲视频| 欧美精品在线观看91| 亚洲福利在线看| 国产一区二区三区四区hd| 一本久久a久久免费精品不卡| 欧美高清hd18日本| 亚洲欧美国内爽妇网| 亚洲天堂免费在线观看视频| 欧美精品高清视频| 免费亚洲电影在线| 91久久精品www人人做人人爽|