• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2025年7月>
            293012345
            6789101112
            13141516171819
            20212223242526
            272829303112
            3456789

            統(tǒng)計(jì)

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Expectation-maximization algorithm EM算法

                 In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

             

              EM算法可用于很多問題的框架,其中需要估計(jì)一組描述概率分布的參數(shù)\boldsymbol\theta,只給定了由此產(chǎn)生的全部數(shù)據(jù)中能觀察到的一部分!

              EM算法是一種迭代算法,它由基本的兩個(gè)步驟組成:

              E step:估計(jì)期望步驟

              使用對隱變量的現(xiàn)有估計(jì)來計(jì)算log極大似然

              M step: 最大化期望步驟

              計(jì)算一個(gè)對隱變量更好的估計(jì),使其最大化log似然函數(shù)對隱變量Y的期望。用新計(jì)算的隱變量參數(shù)代替之前的對隱變量的估計(jì),進(jìn)行下一步的迭代!

             

             

            觀測數(shù)據(jù):觀測到的隨機(jī)變量X的IID樣本:

            image

            缺失數(shù)據(jù):未觀測到的隱含變量(隱變量)Y的值:

            image

            完整數(shù)據(jù): 包含觀測到的隨機(jī)變量X和未觀測到的隨機(jī)變量Y的數(shù)據(jù),Z=(X,Y)

             

            似然函數(shù):(似然函數(shù)的幾種寫法)

            JL})D_HBNI489~H}GCRMWVJ

            log似然函數(shù)為:

            image

            E step:用對隱變量的現(xiàn)有估計(jì)\boldsymbol\theta^{(t)}計(jì)算隱變量Y的期望

              image

            其中需要用到貝葉斯公式:

            image 

            M step:最大化期望,獲得對隱變量更好的估計(jì)

            image

             

            維基中的表述是這樣子:

            Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

                   CR%M2I[QD88[N5$3(H))%ZR

            However, this quantity is often intractable.

            The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

            Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

                   A7DFNWMY)KAI]T5)_OMKRUD

            Maximization step (M-step): Find the parameter that maximizes this quantity:
            \boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

            Note that in typical models to which EM is applied:

            1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
            2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
            3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

            However, it is possible to apply EM to other sorts of models.

            The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

            1. First, initialize the parameters \boldsymbol\theta to some random values.
            2. Compute the best value for Y given these parameter values.
            3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
            4. Finally, iterate until convergence.

            The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

            However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

            總結(jié):

            EM is frequently used for data clustering in machine learning and computer vision.

            EM會(huì)收斂到局部極致,但不能保證收斂到全局最優(yōu)。

            EM對初值比較敏感,通常需要一個(gè)好的,快速的初始化過程。

             

            這是我的Machine Learning課程,先總結(jié)到這里, 下面的工作是做一個(gè)GM_EM的總結(jié),多維高斯密度估計(jì)!

            posted on 2010-10-20 14:44 Sosi 閱讀(2513) 評論(0)  編輯 收藏 引用 所屬分類: Courses

            統(tǒng)計(jì)系統(tǒng)
            97精品久久天干天天天按摩 | 中文字幕精品无码久久久久久3D日动漫 | 7777精品久久久大香线蕉| 伊人久久大香线蕉综合Av | 国产精品中文久久久久久久 | 久久久久18| 久久久精品2019免费观看| 香蕉久久一区二区不卡无毒影院| 久久精品国产WWW456C0M| 无码久久精品国产亚洲Av影片| 国产成人无码精品久久久久免费 | 久久久久人妻一区二区三区vr| 久久久久亚洲av成人无码电影| 久久久久成人精品无码中文字幕| 欧洲国产伦久久久久久久| 久久福利青草精品资源站免费| 狠狠色丁香久久婷婷综合图片 | 久久久久亚洲AV成人网| 久久精品国产亚洲AV无码麻豆| 亚洲精品无码专区久久同性男| 久久久综合九色合综国产| 日韩人妻无码精品久久久不卡| 亚洲精品WWW久久久久久| 国产精品免费久久| 伊人久久大香线蕉影院95| .精品久久久麻豆国产精品| 男女久久久国产一区二区三区| 噜噜噜色噜噜噜久久| 人人妻久久人人澡人人爽人人精品 | 亚洲一区中文字幕久久| 久久久久亚洲AV无码麻豆| 久久久久久伊人高潮影院| 久久综合狠狠综合久久97色| 国产成人精品久久一区二区三区av| 国产精品久久影院| 亚洲欧美精品伊人久久| 精品久久久久久久| 成人a毛片久久免费播放| 久久91这里精品国产2020| 久久久受www免费人成| 尹人香蕉久久99天天拍|