青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統(tǒng)計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數(shù)\boldsymbol\theta,只給定了由此產(chǎn)生的全部數(shù)據(jù)中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現(xiàn)有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數(shù)對隱變量Y的期望。用新計算的隱變量參數(shù)代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數(shù)據(jù):觀測到的隨機變量X的IID樣本:

image

缺失數(shù)據(jù):未觀測到的隱含變量(隱變量)Y的值:

image

完整數(shù)據(jù): 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數(shù)據(jù),Z=(X,Y)

 

似然函數(shù):(似然函數(shù)的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數(shù)為:

image

E step:用對隱變量的現(xiàn)有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結(jié):

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優(yōu)。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結(jié)到這里, 下面的工作是做一個GM_EM的總結(jié),多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2524) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統(tǒng)計系統(tǒng)
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            一区二区高清在线观看| 欧美高清影院| 欧美精品激情| 一区二区欧美在线观看| 久久er精品视频| 久久高清国产| 99国产精品久久久| 国产精品丝袜久久久久久app| 蜜桃av一区二区| 亚洲自拍偷拍福利| 日韩视频一区二区| 亚洲精品国产精品乱码不99 | 欧美久久久久久蜜桃| 在线亚洲成人| 久久视频精品在线| 欧美亚洲视频一区二区| 一区二区三区久久| 欧美色图天堂网| 久久综合久久综合这里只有精品| 亚洲视频中文字幕| 久久久精品日韩欧美| 香蕉av777xxx色综合一区| 亚洲第一区中文99精品| 狠狠久久亚洲欧美专区| 黄色国产精品| 亚洲欧美电影院| 亚洲精品乱码久久久久久按摩观| 老色鬼精品视频在线观看播放| 性色av一区二区三区| 亚洲在线第一页| 午夜视频在线观看一区二区三区| 日韩一级网站| 夜夜嗨av一区二区三区| 亚洲国产精品久久久久| 91久久夜色精品国产网站| 欧美大片免费观看在线观看网站推荐 | 99热免费精品在线观看| 亚洲第一区色| 欧美成人有码| 欧美韩国日本一区| 亚洲国产精品嫩草影院| 久久精品女人的天堂av| 久久性色av| 欧美激情黄色片| 亚洲欧洲一区| 亚洲一区美女视频在线观看免费| 亚洲一区二区三区在线视频| 午夜精品一区二区三区在线视| 先锋影音国产一区| 免费精品视频| 欧美日韩精品免费观看视频完整| 亚洲欧美成人在线| 久久精品综合网| 欧美精选午夜久久久乱码6080| 欧美日韩国产综合视频在线观看| 欧美黄在线观看| 欧美视频精品在线观看| 国产精品一区二区三区成人| 极品尤物久久久av免费看| 欧美四级电影网站| 狠狠色丁香婷婷综合久久片| 欧美精品久久久久久久免费观看 | 欧美成人综合一区| 亚洲精品一区久久久久久| 午夜精品久久久久久久99水蜜桃| 亚洲在线第一页| 玖玖国产精品视频| 国产精品久久久久久久浪潮网站 | 欧美mv日韩mv亚洲| 在线亚洲+欧美+日本专区| 久久久免费精品| 亚洲摸下面视频| 老司机午夜精品视频在线观看| 欧美一区视频在线| 一区二区三区精品久久久| 亚洲午夜免费福利视频| 蜜臀va亚洲va欧美va天堂| 国产精品欧美久久久久无广告| 精品96久久久久久中文字幕无| 亚洲欧美在线网| 欧美亚洲一区二区三区| 欧美一区二区视频在线观看| 午夜精品久久久久久久99水蜜桃 | 久久夜色精品国产亚洲aⅴ | 久久九九久久九九| 极品av少妇一区二区| 欧美黄色aaaa| 国产精品地址| 久久久精品网| 蘑菇福利视频一区播放| 亚洲一区二区三区高清| 午夜宅男欧美| 日韩一级欧洲| 午夜精彩视频在线观看不卡 | 久久精品色图| 免费在线观看一区二区| 一区二区国产日产| 久久av免费一区| 中国成人亚色综合网站| 欧美在线播放| 亚洲视频在线看| 裸体素人女欧美日韩| 亚洲欧美国产高清| 蜜臀91精品一区二区三区| 亚洲素人一区二区| 免费不卡在线观看av| 欧美一进一出视频| 欧美精品三区| 欧美黄在线观看| 国产中文一区| 亚洲欧美国产日韩中文字幕| 亚洲精品在线看| 快播亚洲色图| 久久久久久久综合狠狠综合| 亚洲一区视频| 玖玖在线精品| 久久久久久久性| 国产精品一二一区| 一二三区精品福利视频| 最新日韩欧美| 麻豆成人在线| 久久综合一区二区三区| 国产精品视频导航| 中文欧美日韩| 亚洲一区二区三区中文字幕| 欧美黑人在线观看| 欧美二区在线播放| 亚洲国产精品va在线观看黑人| 先锋a资源在线看亚洲| 欧美一区二区成人6969| 国产精品五区| 午夜精品福利视频| 欧美淫片网站| 国产丝袜一区二区| 欧美一区二区日韩| 欧美在线视频导航| 国产亚洲欧美另类中文| 欧美一区二区三区免费视频| 久久精品国产99国产精品澳门 | 国产欧美一区在线| 亚洲欧美久久久久一区二区三区| 亚洲自拍偷拍色片视频| 欧美深夜影院| 亚洲一区国产视频| 欧美一区二区福利在线| 国产欧美在线播放| 欧美综合77777色婷婷| 久久亚洲春色中文字幕| 在线看片成人| 欧美成人免费va影院高清| 欧美成人一区在线| 亚洲国产一区二区三区高清| 欧美国产精品日韩| 99视频日韩| 欧美影院成年免费版| 狠狠v欧美v日韩v亚洲ⅴ| 久久久午夜精品| 亚洲人成小说网站色在线| 日韩视频亚洲视频| 欧美精品日韩www.p站| 亚洲一区在线播放| 老司机午夜精品视频在线观看| 亚洲国产欧美国产综合一区| 欧美精品免费视频| 亚洲欧美日韩国产另类专区| 久久亚洲国产成人| 日韩视频永久免费观看| 国产精品私房写真福利视频| 久久久亚洲国产美女国产盗摄| 亚洲高清不卡在线观看| 亚洲综合色视频| 精品va天堂亚洲国产| 欧美日韩免费网站| 久久久青草青青国产亚洲免观| 夜夜嗨av色综合久久久综合网 | 一区二区三区成人| 麻豆久久婷婷| 亚洲欧美在线视频观看| 亚洲第一中文字幕| 国产精品区二区三区日本| 久久综合九色99| 国产精品99久久久久久人| 亚洲永久免费视频| 欧美激情精品久久久久久免费印度 | 国产综合在线视频| 欧美欧美在线| 久久天天狠狠| 欧美一级淫片aaaaaaa视频| 91久久精品国产91久久性色tv| 久久成人免费视频| 亚洲网站视频| 99re6这里只有精品| 亚洲二区在线| 国内精品嫩模av私拍在线观看| 欧美伦理一区二区| 免费高清在线一区| 久久另类ts人妖一区二区| 亚洲欧美日韩一区在线| 中文精品在线| 亚洲深夜福利视频|