• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2011年5月>
            24252627282930
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            有向圖強連通分量 Kosaraju算法

               It makes use of the fact that the transpose graph (the same graph with the direction of every edge reversed) has exactly the same strongly connected components as the original graph.

               它利用了有向圖的這樣一個性質,一個圖和他的transpose graph(邊全部反向)具有相同的強連通分量!

            算法偽代碼

            Kosaraju's algorithm is simple and works as follows:

            • Let G be a directed graph and S be an empty stack.
            • While S does not contain all vertices:
              • Choose an arbitrary vertex v not in S. Perform a depth-first search starting at v. Each time that depth-first search finishes expanding a vertex u, push u onto S.
            • Reverse the directions of all arcs to obtain the transpose graph.
            • While S is nonempty:
              • Pop the top vertex v from S. Perform a depth-first search starting at v. The set of visited vertices will give the strongly connected component containing v; record this and remove all these vertices from the graph G and the stack S. Equivalently,breadth-first search (BFS) can be used instead of depth-first search.

             

             

            需要注意的是這里的第一遍BFS搜索的時候的入隊序列,Each time that depth-first search finishes expanding a vertex u, push u onto S.只有當擴展結束了此節點之后,此節點才會被push onto S.

            算法思路:

            1, 后序遍歷原圖,對每個訪問到的節點標記時間戳。

            2, 按照時間戳的降序遍歷反向圖,得到的每個連通塊就是一個強連通分量。

            證明是很簡單的:

            假設以上算法從u訪問到了v,那么說明反向圖有一條從u到v的邊,也就說明了原圖中有一條從v到u的邊,又因為u的標號是大于v的,那么,u一定在v之前訪問到(否則v的標號將大于u),并且是從u訪問到v了的(v到u也有一條路徑,否則就會從v訪問到u)。

             

            QQ截圖未命名

            如果應用我們第一個Tarjan算法的例子的話,第一遍DFS 得到的次序是 6 4 2 5 3 1

             

            代碼

            #include "cstdlib"
            #include "cctype"
            #include "cstring"
            #include "cstdio"
            #include "cmath"
            #include "algorithm"
            #include "vector"
            #include "string"
            #include "iostream"
            #include "sstream"
            #include "set"
            #include "queue"
            #include "stack"
            #include "fstream"
            #include "strstream"
            using namespace std;
            #define M 2000
            bool vis[M];                 //遍歷數組
            int post[M];                 //時間戳對應的點
            int timestamp;               //時間戳
            int ComponetNumber=0;        //有向圖強連通分量個數
            vector <int> Edge[M];        //鄰接表表示
            vector <int> Opp[M];         //原圖的反圖
            vector <int> Component[M];   //獲得強連通分量結果

            void dfs(int u) {             //第一個dfs確定時間戳
                vis[u] = true;
                for(int i=0;i<Edge[u].size();i++) {
                    if(vis[ Edge[u][i]])    continue;
                    //cout<<Edge[u][i]<<endl;
                    dfs(Edge[u][i]);
                }
                //cout<<"timestamp    "<<timestamp<<"       "<<u<<endl;   
                post[timestamp++] = u;
            }

            void dfs2(int u) {      //第二個反邊dfs確定連通塊
                vis[u] = true;
                Component[ComponetNumber].push_back(u);
                for(int i=0;i<Opp[u].size();i++)
                {
                    int v = Opp[u][i];
                    if(vis[v])  continue;
                    dfs2(v);
                }
            }

            void Kosaraju(int n) {
                memset(vis,0,sizeof(vis));
                timestamp = 0;
                for(int i=0;i<n;i++) {
                    if(vis[i])    continue;
                    dfs(i);
                }
                memset(vis,0,sizeof(vis));
                ComponetNumber++;
                for(int i=n-1;i>=0;i--) {//按時間戳從大到小搜
                    if(vis[post[i]])    continue;
                    Component[ComponetNumber].clear();
                    dfs2(post[i]);
                    ComponetNumber++;
                }
                ComponetNumber--;      //最后我們把塊加了1。。所以要減掉
            }
            int main()
            {
                Edge[0].push_back(1);Edge[0].push_back(2);
                Edge[1].push_back(3);
                Edge[2].push_back(3);Edge[2].push_back(4);
                Edge[3].push_back(0);Edge[3].push_back(5);
                Edge[4].push_back(5);

                Opp[0].push_back(3);
                Opp[1].push_back(0);
                Opp[2].push_back(0);
                Opp[3].push_back(1);Opp[3].push_back(2);
                Opp[4].push_back(2);
                Opp[5].push_back(3);Opp[6].push_back(4);
                int  N=6;
                Kosaraju(N);
                cout<<"ComponetNumber is "<<ComponetNumber<<endl;
                for(int i=0;i<N;i++)
                {
                    for(int j=0;j<Component[i].size();j++)
                        cout<<Component[i][j];
                    cout<<endl;
                }
                return 0;
            }

             

             

                此算法的時間復雜度當然也是 O(M+N)(M條邊,N個點)與Tarjan算法相似。。但是在系數上不如Tarjan算法!在實際的測試中,Tarjan算法的運行效率也比Kosaraju算法高30%左右。 

                當然Kosaraju算法額外花費的時間,也不是白費的,它獲得了圖的一個拓撲性質哦!!

                如果我們把求出來的每個強連通分量收縮成一個點,并且用求出每個強連通分量的順序來標記收縮后的節點,那么這個順序其 實就是強連通分量收縮成點后形成的有向無環圖的拓撲序列。為什么呢?首先,應該明確搜索后的圖一定是有向無環圖呢?廢話,如果還有環,那么環上的頂點對應 的所有原來圖上的頂點構成一個強連通分量,而不是構成環上那么多點對應的獨自的強連通分量了。然后就是為什么是拓撲序列,我們在改進分析的時候,不是先選 的樹不會連通到其他樹上(對于反圖GT來說),也就是后選的樹沒有連通到先選的樹,也即先出現的強連通分量收縮的點只能指向后出現的強連通分量收縮的點。那么拓撲序列不是理所當然的嗎?這就是Kosaraju算法的一個隱藏性質。

             

            Reference :

            http://www.notonlysuccess.com/?p=181

            推薦一下啊!終于算是搞的差不多了。。下面就是做一些練習,然后鞏固提高一下!接下來剩下的最后一個算法了:Gabow 算法

            posted on 2010-09-26 22:49 Sosi 閱讀(1863) 評論(1)  編輯 收藏 引用

            評論

            # re: 有向圖強連通分量 Kosaraju算法 2013-04-29 19:13 ygqwan

            樓主的第一次post數組是不是存錯了呢
              回復  更多評論    
            統計系統
            AV狠狠色丁香婷婷综合久久| 国产成人精品久久一区二区三区av | 国产免费福利体检区久久| 99久久国产亚洲高清观看2024| 久久久久这里只有精品| 无码久久精品国产亚洲Av影片| 香蕉久久一区二区不卡无毒影院| 久久亚洲国产成人影院网站| 亚洲国产另类久久久精品| 久久久WWW成人免费毛片| 久久久噜噜噜久久熟女AA片| 久久久久香蕉视频| 欧美一区二区三区久久综合 | 久久精品亚洲一区二区三区浴池 | 97精品国产91久久久久久| 久久午夜综合久久| 色综合久久天天综合| 久久久久久无码Av成人影院| 99久久香蕉国产线看观香| 久久久WWW成人免费毛片| 久久香蕉国产线看观看99| 久久精品中文騷妇女内射| 久久久久久久久久久久久久| 三级韩国一区久久二区综合| 色成年激情久久综合| 国产精品对白刺激久久久| 精品国产日韩久久亚洲| 国产精品欧美久久久久无广告| 97超级碰碰碰久久久久| 久久国产精品无码一区二区三区| 性做久久久久久久久| 深夜久久AAAAA级毛片免费看| 久久精品国产精品亚洲艾草网美妙| 国产精品99久久免费观看| 久久精品天天中文字幕人妻| 99久久99久久| 久久久久夜夜夜精品国产| 女人香蕉久久**毛片精品| 国产无套内射久久久国产| 久久亚洲国产精品五月天婷| 思思久久99热只有频精品66|