• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2011年1月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            方法綜述比較 Version 2

            Baseline method1

            方法: Check height of the foot

            優點:easy

            缺點: easily fooled,if a character skids to a stop

             

            Baseline mehtod 2

            方法: Check speed of the foot

            優點:easy

            缺點: unreliable  the markers have some speed even during foot plants.         marker data is noisy

             

            Bindiganavale 98  Proceeding of the International Workshop on Modeling and Motion Capture Techniques for Virtual Environments

            方法: detect zero-crossing in acceration space of the end effectors

            優點: work well for non-noisy data

            缺點:  unreliable on motion capture data  not reliabel when working with noisy signals    require manualy tagged-objects to avoid checking for collison with all the objects in the scene

             

            Liu and Popovic 2002  Siggraph

            方法:detect frames in which the feet are stationary

            優點:work well for non-noisy data

            缺點: unreliable on motion capture data, not automatic .This method is dedicated to keyframed animation and is not intended to be applied to motion capture as it does not consider noise in the data.

             

            Kovar 2002  Symposium on Computer Animation

            題目:Footskate cleanup for motion capture editing

            方法:use specific thresholds on the position and velocity of the feet to detect them.

            優點:

            缺點:not reliable for motion capture animation as derivatives tend to amplify nosie in signals

             

            Lee 2002 Siggraph

            題目:Interactive control of AVstars animated with human motion data

            方法: consider body segments and objects in the environment relative velocity and position to decide whether a body segment is in contact with an object in the scene or not

            優點:

            缺點:not reliable for motion capture animation as derivatives tend to amplify nosie in signals

             

             

            S.Menareais    2004  Symposium on Computer Animation

            題目: Synchronization for Dynamic blending of motions

            方法:use specific thresholds on the position and velocity of the feet to detect them

            優點:

            缺點 not reliable for motion capture animation as derivatives tend to amplify nosie in signals

             

             

            Ikemoto 06 Symposium on Interactive 3D Graphics

            方法:use a classifier to detect when foot plants should occur.By labeling a small set of frames, a user trains a classifier to detect when the foot should be planted.The classifier then automatically labels the remainder of the frames.

            優點: semi-automatic(訓練部分需要手動參與),

            缺點: This method is dedicated to footplants detection and would be difficult to generilized to any kind of effectors and /or constraints .Indeed ,detecting another type of constraints would require to build a new kind of teature vectors and to train the calssifier once more.

            想法:這個方法沒看懂。。。說實話。。(一下午都在搞這個。。出了配了個Emacs。。。)

            1) 首先怎么把三維mark點的軌跡映射到二維上,而且都是對齊的? 從root點來搞?(貌似root點的確可以搞)

            2) 下面就剩一些細節的東西。。21幀的問題。。。

            貌似的確是SKELETON相關的。。所以不適合我們的問題。。。summer說的的確是不錯的。。

             

            Le 06 Symposium on Computer Animation

            題目:Robust kinematic constraint detection for motion data

            方法:

            優點:

            缺點:

            這個Roubust Kinematic 看得我真是頭大的很啊。。。SVD分解,線性代數。。。映射空間。。。高斯噪聲。。。噪聲模板。。。我勒個去。。先補基礎。。

            posted on 2010-08-25 17:41 Sosi 閱讀(286) 評論(0)  編輯 收藏 引用 所屬分類: Research

            統計系統
            精品免费tv久久久久久久| 99久久精品日本一区二区免费| 国产精品久久久久久久午夜片 | 精品国产99久久久久久麻豆 | 国产一区二区久久久| 久久水蜜桃亚洲av无码精品麻豆| 97久久超碰国产精品旧版| 久久精品国产亚洲av瑜伽| 亚洲精品tv久久久久| 久久精品国产亚洲AV高清热| 91精品无码久久久久久五月天| 久久精品国产72国产精福利| 久久精品中文闷骚内射| 精品无码久久久久久国产| 久久亚洲AV无码精品色午夜麻豆| 久久99国产精品久久99| 2019久久久高清456| 国产精品99久久久久久猫咪| 亚洲va久久久噜噜噜久久天堂 | 久久无码AV中文出轨人妻| 久久久久久九九99精品| 色偷偷91久久综合噜噜噜噜 | 久久亚洲中文字幕精品一区| 97久久精品午夜一区二区| 亚洲国产成人久久一区久久| 99久久99久久精品国产片| 人妻精品久久无码区| 2020久久精品亚洲热综合一本 | 蜜臀久久99精品久久久久久小说| 精品水蜜桃久久久久久久| 91性高湖久久久久| 久久久精品人妻一区二区三区蜜桃 | 国产精品久久久久久久人人看| 国产精品99久久久久久www| 日韩精品久久久久久| 国产精品久久久久久福利漫画| 久久Av无码精品人妻系列| 亚洲va久久久噜噜噜久久男同| 国产精品久久久久久五月尺| 日韩欧美亚洲综合久久 | 性做久久久久久免费观看|