• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            eryar

            PipeCAD - Plant Piping Design Software.
            RvmTranslator - Translate AVEVA RVM to OBJ, glTF, etc.
            posts - 603, comments - 590, trackbacks - 0, articles - 0

            OpenCascade Law Function

            Posted on 2018-03-25 17:11 eryar 閱讀(1305) 評論(0)  編輯 收藏 引用 所屬分類: 2.OpenCASCADE

            OpenCascade Law Function

            eryar@163.com

            1.Introduction

            在OpenCASCADE的TKGeomAlgo Toolkit中提供了一個Law Package,在Law包中有一個基類:Law_Function,字面上翻譯為 規(guī)則函數(shù)。其類圖如下所示:

            wps_clip_image-22828

            Figure 1. Law Function class diagram

            本文主要對Law_Function的子類進行介紹,進一步理解OpenCASCADE中Law相關類的作用。

            2.Law Functions

            根據(jù)Law_Function可知,Law_Function的子類有常量規(guī)則Law_Constant、線性規(guī)則Law_Linear、組合規(guī)則Law_Composite及B樣條規(guī)則Law_BSpFunc。抽象類Law_Function的純虛函數(shù)有:

            l Continuity(): 規(guī)則函數(shù)的連續(xù)性;

            l Value():計算對應參數(shù)X的函數(shù)值Y;

            l D1():計算規(guī)則函數(shù)在參數(shù)X處的一階導數(shù);

            l D2():計算規(guī)則函數(shù)在參數(shù)X處的二階導數(shù);

            l Bounds():規(guī)則函數(shù)的定義區(qū)間;

            wps_clip_image-13300

            從上面的虛函數(shù)可以看出類Law_Function是一個一元變量的函數(shù),與類math_Function的功能類似。

            3.Test Code

            下面的代碼將規(guī)則函數(shù)Law_Function的幾個子類通過生成Draw腳本,在Draw Test Harness中進行可視化,直觀地顯示出了幾個規(guī)則函數(shù),便于理解。

            /*
            Copyright(C) 2018 Shing Liu(eryar@163.com)
            Permission is hereby granted, free of charge, to any person obtaining a copy
            of this software and associated documentation files(the "Software"), to deal
            in the Software without restriction, including without limitation the rights
            to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
            copies of the Software, and to permit persons to whom the Software is
            furnished to do so, subject to the following conditions :
            The above copyright notice and this permission notice shall be included in all
            copies or substantial portions of the Software.
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
            SOFTWARE.
            */
            #include <TColgp_Array1OfPnt2d.hxx>
            #include <Law_Constant.hxx>
            #include <Law_Linear.hxx>
            #include <Law_BSpFunc.hxx>
            #include <Law_S.hxx>
            #include <Law_Interpol.hxx>
            #pragma comment(lib, "TKernel.lib")
            #pragma comment(lib, "TKMath.lib")
            #pragma comment(lib, "TKG2d.lib")
            #pragma comment(lib, "TKG3d.lib")
            #pragma comment(lib, "TKGeomBase.lib")
            #pragma comment(lib, "TKGeomAlgo.lib")
            Standard_Integer aId = 0;
            void draw(const Handle(Law_Function)& theLaw, std::ostream& theOutput)
            {
                const Standard_Integer aStep = 20;
                Standard_Real aFirst = 0.0;
                Standard_Real aLast = 0.0;
                Standard_Real aDelta = 0.0;
                Standard_Real aX = 0.0;
                Standard_Real aY = 0.0;
                theLaw->Bounds(aFirst, aLast);
                aDelta = (aLast - aFirst) / aStep;
                theOutput << "polyline law" << ++aId;
                for (Standard_Integer i = 0; i <= aStep; ++i)
                {
                    aX = aFirst + i * aDelta;
                    aY = theLaw->Value(aX);
                    theOutput  << " " << aX << " " << aY << " 0.0";
                }
                theOutput << "\n vdisplay law" << aId << std::endl;
                theOutput << "vaspects law" << aId << " -setColor " << ((aId % 2) ? " red " : " yellow ") << std::endl;
            }
            void test(std::ostream& theOutput)
            {
                // 1. Constant law.
                Handle(Law_Constant) aConstantLaw = new Law_Constant();
                aConstantLaw->Set(2.0, 0.0, 1.0);
                draw(aConstantLaw, theOutput);
                // 2. Linear evolution law.
                Handle(Law_Linear) aLinearLaw = new Law_Linear();
                aLinearLaw->Set(1.0, 2.0, 3.0, 5.0);
                draw(aLinearLaw, theOutput);
                // 3. An "S" evolution law.
                Handle(Law_S) aSLaw = new Law_S();
                aSLaw->Set(3.0, 5.0, 6.0, 8.0);
                draw(aSLaw, theOutput);
                // 4. Provides an evolution law that interpolates a set of parameter and value pairs (wi, radi)
                TColgp_Array1OfPnt2d aPoints(1, 4);
                aPoints.SetValue(1, gp_Pnt2d(6.0, 8.0));
                aPoints.SetValue(2, gp_Pnt2d(7.0, 5.0));
                aPoints.SetValue(3, gp_Pnt2d(8.0, 9.0));
                aPoints.SetValue(4, gp_Pnt2d(9.0, 2.0));
                Handle(Law_Interpol) anInterpolativeLaw = new Law_Interpol();
                anInterpolativeLaw->Set(aPoints);
                draw(anInterpolativeLaw, theOutput);
            }
            int main(int argc, char* argv[])
            {
                std::ofstream aTclFile("d:/tcl/law.tcl");
                test(aTclFile);
                return 0;
            }

            程序會在d:/tcl中生成一個law.tcl文件,將此文件加載到Draw 中即可顯示出規(guī)則函數(shù)對應的曲線,如下圖所示:

            wps_clip_image-6615

            Figure 2. Visualization Law Function Curves

            由圖可知,常量規(guī)則函數(shù)在定義區(qū)間內(nèi)是一條直線;線性規(guī)則函數(shù)是一條直線;S型函數(shù)是S型的B樣條曲線;插值函數(shù)是根據(jù)指定點插值得到的B樣條曲線。

            4.Conclusion

            在OpenCASCADE中經(jīng)常可以看到一些與Law相關的類,本文介紹了TKGeomAlgo中的Law包,綜上所述可知,Law就是一元函數(shù),與math_Function的概念一致。

            本文顯示規(guī)則曲線的方式可供借鑒,提高開發(fā)效率。只需要生成一個文本文件,就可以將結(jié)果可視化,對于其他三維的也是一樣。



            為了方便大家在移動端也能看到我的博文和討論交流,現(xiàn)已注冊微信公眾號,歡迎大家掃描下方二維碼關注。
            Shing Liu(eryar@163.com)

             

            久久久精品久久久久久 | 久久精品成人一区二区三区| 久久久久人妻一区精品| 国产亚洲色婷婷久久99精品| 久久人人爽人人爽人人片AV高清| 亚洲精品乱码久久久久久蜜桃 | 色婷婷噜噜久久国产精品12p| 91精品国产色综久久 | 久久久婷婷五月亚洲97号色| 久久久久久久97| 亚洲精品午夜国产VA久久成人| 久久无码人妻一区二区三区午夜| 久久妇女高潮几次MBA| 无码国内精品久久人妻| 亚洲国产一成人久久精品| 伊人久久精品无码二区麻豆| 久久人人爽人人爽人人片av高请| 精品久久久中文字幕人妻| 久久伊人精品一区二区三区| 久久WWW免费人成一看片| 99久久无码一区人妻a黑| 久久久久综合网久久| 国产精品久久99| 亚洲午夜精品久久久久久浪潮| 久久免费看黄a级毛片| 97久久国产综合精品女不卡 | 久久高清一级毛片| 久久亚洲高清综合| 午夜精品久久久久久99热| 亚洲国产精品一区二区久久| 久久毛片免费看一区二区三区| 久久无码高潮喷水| 青青青伊人色综合久久| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 国产精品久久久久久搜索| 久久99精品久久久久久不卡 | 久久青青草视频| 国产精品久久久久久久久鸭 | 国产精品久久久久蜜芽| 97久久超碰成人精品网站| 久久久WWW免费人成精品|