• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            eryar

            PipeCAD - Plant Piping Design Software.
            RvmTranslator - Translate AVEVA RVM to OBJ, glTF, etc.
            posts - 603, comments - 590, trackbacks - 0, articles - 0

            OpenCascade Law Function

            Posted on 2018-03-25 17:11 eryar 閱讀(1304) 評(píng)論(0)  編輯 收藏 引用 所屬分類(lèi): 2.OpenCASCADE

            OpenCascade Law Function

            eryar@163.com

            1.Introduction

            在OpenCASCADE的TKGeomAlgo Toolkit中提供了一個(gè)Law Package,在Law包中有一個(gè)基類(lèi):Law_Function,字面上翻譯為 規(guī)則函數(shù)。其類(lèi)圖如下所示:

            wps_clip_image-22828

            Figure 1. Law Function class diagram

            本文主要對(duì)Law_Function的子類(lèi)進(jìn)行介紹,進(jìn)一步理解OpenCASCADE中Law相關(guān)類(lèi)的作用。

            2.Law Functions

            根據(jù)Law_Function可知,Law_Function的子類(lèi)有常量規(guī)則Law_Constant、線(xiàn)性規(guī)則Law_Linear、組合規(guī)則Law_Composite及B樣條規(guī)則Law_BSpFunc。抽象類(lèi)Law_Function的純虛函數(shù)有:

            l Continuity(): 規(guī)則函數(shù)的連續(xù)性;

            l Value():計(jì)算對(duì)應(yīng)參數(shù)X的函數(shù)值Y;

            l D1():計(jì)算規(guī)則函數(shù)在參數(shù)X處的一階導(dǎo)數(shù);

            l D2():計(jì)算規(guī)則函數(shù)在參數(shù)X處的二階導(dǎo)數(shù);

            l Bounds():規(guī)則函數(shù)的定義區(qū)間;

            wps_clip_image-13300

            從上面的虛函數(shù)可以看出類(lèi)Law_Function是一個(gè)一元變量的函數(shù),與類(lèi)math_Function的功能類(lèi)似。

            3.Test Code

            下面的代碼將規(guī)則函數(shù)Law_Function的幾個(gè)子類(lèi)通過(guò)生成Draw腳本,在Draw Test Harness中進(jìn)行可視化,直觀地顯示出了幾個(gè)規(guī)則函數(shù),便于理解。

            /*
            Copyright(C) 2018 Shing Liu(eryar@163.com)
            Permission is hereby granted, free of charge, to any person obtaining a copy
            of this software and associated documentation files(the "Software"), to deal
            in the Software without restriction, including without limitation the rights
            to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
            copies of the Software, and to permit persons to whom the Software is
            furnished to do so, subject to the following conditions :
            The above copyright notice and this permission notice shall be included in all
            copies or substantial portions of the Software.
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
            SOFTWARE.
            */
            #include <TColgp_Array1OfPnt2d.hxx>
            #include <Law_Constant.hxx>
            #include <Law_Linear.hxx>
            #include <Law_BSpFunc.hxx>
            #include <Law_S.hxx>
            #include <Law_Interpol.hxx>
            #pragma comment(lib, "TKernel.lib")
            #pragma comment(lib, "TKMath.lib")
            #pragma comment(lib, "TKG2d.lib")
            #pragma comment(lib, "TKG3d.lib")
            #pragma comment(lib, "TKGeomBase.lib")
            #pragma comment(lib, "TKGeomAlgo.lib")
            Standard_Integer aId = 0;
            void draw(const Handle(Law_Function)& theLaw, std::ostream& theOutput)
            {
                const Standard_Integer aStep = 20;
                Standard_Real aFirst = 0.0;
                Standard_Real aLast = 0.0;
                Standard_Real aDelta = 0.0;
                Standard_Real aX = 0.0;
                Standard_Real aY = 0.0;
                theLaw->Bounds(aFirst, aLast);
                aDelta = (aLast - aFirst) / aStep;
                theOutput << "polyline law" << ++aId;
                for (Standard_Integer i = 0; i <= aStep; ++i)
                {
                    aX = aFirst + i * aDelta;
                    aY = theLaw->Value(aX);
                    theOutput  << " " << aX << " " << aY << " 0.0";
                }
                theOutput << "\n vdisplay law" << aId << std::endl;
                theOutput << "vaspects law" << aId << " -setColor " << ((aId % 2) ? " red " : " yellow ") << std::endl;
            }
            void test(std::ostream& theOutput)
            {
                // 1. Constant law.
                Handle(Law_Constant) aConstantLaw = new Law_Constant();
                aConstantLaw->Set(2.0, 0.0, 1.0);
                draw(aConstantLaw, theOutput);
                // 2. Linear evolution law.
                Handle(Law_Linear) aLinearLaw = new Law_Linear();
                aLinearLaw->Set(1.0, 2.0, 3.0, 5.0);
                draw(aLinearLaw, theOutput);
                // 3. An "S" evolution law.
                Handle(Law_S) aSLaw = new Law_S();
                aSLaw->Set(3.0, 5.0, 6.0, 8.0);
                draw(aSLaw, theOutput);
                // 4. Provides an evolution law that interpolates a set of parameter and value pairs (wi, radi)
                TColgp_Array1OfPnt2d aPoints(1, 4);
                aPoints.SetValue(1, gp_Pnt2d(6.0, 8.0));
                aPoints.SetValue(2, gp_Pnt2d(7.0, 5.0));
                aPoints.SetValue(3, gp_Pnt2d(8.0, 9.0));
                aPoints.SetValue(4, gp_Pnt2d(9.0, 2.0));
                Handle(Law_Interpol) anInterpolativeLaw = new Law_Interpol();
                anInterpolativeLaw->Set(aPoints);
                draw(anInterpolativeLaw, theOutput);
            }
            int main(int argc, char* argv[])
            {
                std::ofstream aTclFile("d:/tcl/law.tcl");
                test(aTclFile);
                return 0;
            }

            程序會(huì)在d:/tcl中生成一個(gè)law.tcl文件,將此文件加載到Draw 中即可顯示出規(guī)則函數(shù)對(duì)應(yīng)的曲線(xiàn),如下圖所示:

            wps_clip_image-6615

            Figure 2. Visualization Law Function Curves

            由圖可知,常量規(guī)則函數(shù)在定義區(qū)間內(nèi)是一條直線(xiàn);線(xiàn)性規(guī)則函數(shù)是一條直線(xiàn);S型函數(shù)是S型的B樣條曲線(xiàn);插值函數(shù)是根據(jù)指定點(diǎn)插值得到的B樣條曲線(xiàn)。

            4.Conclusion

            在OpenCASCADE中經(jīng)常可以看到一些與Law相關(guān)的類(lèi),本文介紹了TKGeomAlgo中的Law包,綜上所述可知,Law就是一元函數(shù),與math_Function的概念一致。

            本文顯示規(guī)則曲線(xiàn)的方式可供借鑒,提高開(kāi)發(fā)效率。只需要生成一個(gè)文本文件,就可以將結(jié)果可視化,對(duì)于其他三維的也是一樣。



            為了方便大家在移動(dòng)端也能看到我的博文和討論交流,現(xiàn)已注冊(cè)微信公眾號(hào),歡迎大家掃描下方二維碼關(guān)注。
            Shing Liu(eryar@163.com)

             

            欧美亚洲色综久久精品国产| 九九久久99综合一区二区| 久久久久国产精品| 9191精品国产免费久久| 国产精品成人久久久久三级午夜电影 | 99久久无码一区人妻| 久久久久国产亚洲AV麻豆| 亚洲综合熟女久久久30p| 青青草国产成人久久91网| 7777精品久久久大香线蕉| 日韩欧美亚洲综合久久影院d3| 久久青青色综合| 亚洲天堂久久精品| 亚洲精品乱码久久久久久自慰| 91精品国产综合久久香蕉 | 久久亚洲春色中文字幕久久久| 99久久99久久精品国产片| 精品久久久中文字幕人妻| 国内精品久久久久久不卡影院| 亚洲精品乱码久久久久久蜜桃| 国产福利电影一区二区三区久久老子无码午夜伦不 | 亚洲va国产va天堂va久久| 欧美午夜精品久久久久久浪潮| 久久96国产精品久久久| 久久久久久无码Av成人影院| 亚洲欧美一级久久精品| 欧美激情精品久久久久久久九九九| 国产精品久久久久无码av| 国产激情久久久久久熟女老人 | 久久伊人精品青青草原高清| 久久综合狠狠综合久久综合88| 欧美激情一区二区久久久| 久久精品亚洲欧美日韩久久| 国产精品免费久久| 国产亚州精品女人久久久久久 | 久久天天日天天操综合伊人av| 91性高湖久久久久| 中文字幕亚洲综合久久| 久久无码av三级| 18岁日韩内射颜射午夜久久成人| 久久er热视频在这里精品|