• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Geometric Transformations of Images

            https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html

            Goals

            • Learn to apply different geometric transformation to images like translation, rotation, affine transformation etc.
            • You will see these functions: cv2.getPerspectiveTransform

            Transformations

            OpenCV provides two transformation functions, cv2.warpAffine and cv2.warpPerspective, with which you can have all kinds of transformations. cv2.warpAffine takes a 2x3 transformation matrix while cv2.warpPerspective takes a 3x3 transformation matrix as input.

            Scaling

            Scaling is just resizing of the image. OpenCV comes with a function cv2.resize() for this purpose. The size of the image can be specified manually, or you can specify the scaling factor. Different interpolation methods are used. Preferable interpolation methods are cv2.INTER_AREA for shrinking and cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR for zooming. By default, interpolation method used is cv2.INTER_LINEAR for all resizing purposes. You can resize an input image either of following methods:

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg')  res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)  #OR  height, width = img.shape[:2] res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) 

            Translation

            Translation is the shifting of object’s location. If you know the shift in (x,y) direction, let it be (t_x,t_y), you can create the transformation matrix \textbf{M} as follows:

            M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y  \end{bmatrix}

            You can take make it into a Numpy array of type np.float32 and pass it into cv2.warpAffine() function. See below example for a shift of (100,50):

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = np.float32([[1,0,100],[0,1,50]]) dst = cv2.warpAffine(img,M,(cols,rows))  cv2.imshow('img',dst) cv2.waitKey(0) cv2.destroyAllWindows() 

            Warning

             

            Third argument of the cv2.warpAffine() function is the size of the output image, which should be in the form of (width, height). Remember width = number of columns, and height = number of rows.

            See the result below:

            Translation

            Rotation

            Rotation of an image for an angle \theta is achieved by the transformation matrix of the form

            M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta   \end{bmatrix}

            But OpenCV provides scaled rotation with adjustable center of rotation so that you can rotate at any location you prefer. Modified transformation matrix is given by

            \begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot center.x -  \beta \cdot center.y \\ - \beta &  \alpha &  \beta \cdot center.x + (1- \alpha )  \cdot center.y \end{bmatrix}

            where:

            \begin{array}{l} \alpha =  scale \cdot \cos \theta , \\ \beta =  scale \cdot \sin \theta \end{array}

            To find this transformation matrix, OpenCV provides a function, cv2.getRotationMatrix2D. Check below example which rotates the image by 90 degree with respect to center without any scaling.

            img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1) dst = cv2.warpAffine(img,M,(cols,rows)) 

            See the result:

            Rotation of Image

            Affine Transformation

            In affine transformation, all parallel lines in the original image will still be parallel in the output image. To find the transformation matrix, we need three points from input image and their corresponding locations in output image. Then cv2.getAffineTransform will create a 2x3 matrix which is to be passed to cv2.warpAffine.

            Check below example, and also look at the points I selected (which are marked in Green color):

            img = cv2.imread('drawing.png') rows,cols,ch = img.shape  pts1 = np.float32([[50,50],[200,50],[50,200]]) pts2 = np.float32([[10,100],[200,50],[100,250]])  M = cv2.getAffineTransform(pts1,pts2)  dst = cv2.warpAffine(img,M,(cols,rows))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            See the result:

            Affine Transformation

            Perspective Transformation

            For perspective transformation, you need a 3x3 transformation matrix. Straight lines will remain straight even after the transformation. To find this transformation matrix, you need 4 points on the input image and corresponding points on the output image. Among these 4 points, 3 of them should not be collinear. Then transformation matrix can be found by the function cv2.getPerspectiveTransform. Then apply cv2.warpPerspective with this 3x3 transformation matrix.

            See the code below:

            img = cv2.imread('sudokusmall.png') rows,cols,ch = img.shape  pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])  M = cv2.getPerspectiveTransform(pts1,pts2)  dst = cv2.warpPerspective(img,M,(300,300))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            Result:

            Perspective Transformation

            Additional Resources

            1. “Computer Vision: Algorithms and Applications”, Richard Szeliski

            Exercises

            Help and Feedback

            You did not find what you were looking for?
            • Ask a question on the Q&A forum.
            • If you think something is missing or wrong in the documentation, please file a bug report.

            posted on 2017-10-12 15:28 zmj 閱讀(741) 評論(0)  編輯 收藏 引用

            久久久亚洲裙底偷窥综合| 精品午夜久久福利大片| 伊人久久大香线蕉成人| 久久精品国产亚洲AV影院| 99国产精品久久| 欧美激情精品久久久久久| 亚洲成色WWW久久网站| 亚洲国产精品久久久久| 婷婷久久综合| 久久精品成人免费网站| 国产免费久久精品99re丫y| 99国产欧美精品久久久蜜芽| 伊人久久亚洲综合影院| 久久精品视频免费| 亚洲国产精品一区二区久久hs| 久久99精品综合国产首页| 久久亚洲sm情趣捆绑调教| 久久最近最新中文字幕大全 | 久久久久亚洲精品无码蜜桃 | 狠狠色狠狠色综合久久| 精品999久久久久久中文字幕| 色妞色综合久久夜夜| 久久久久人妻精品一区三寸蜜桃| 久久99精品久久久久久动态图| 久久天天婷婷五月俺也去| 精品乱码久久久久久夜夜嗨 | 久久大香香蕉国产| 中文字幕无码精品亚洲资源网久久| 精品视频久久久久| 2021国产成人精品久久| 精品国产福利久久久| 国内精品久久人妻互换| 99久久精品午夜一区二区| 日本久久久久亚洲中字幕| 亚洲色婷婷综合久久| 亚洲中文久久精品无码| 亚洲AV无码1区2区久久| 久久久久久无码Av成人影院 | 久久国产视屏| 久久免费国产精品| 久久福利资源国产精品999|