• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Geometric Transformations of Images

            https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html

            Goals

            • Learn to apply different geometric transformation to images like translation, rotation, affine transformation etc.
            • You will see these functions: cv2.getPerspectiveTransform

            Transformations

            OpenCV provides two transformation functions, cv2.warpAffine and cv2.warpPerspective, with which you can have all kinds of transformations. cv2.warpAffine takes a 2x3 transformation matrix while cv2.warpPerspective takes a 3x3 transformation matrix as input.

            Scaling

            Scaling is just resizing of the image. OpenCV comes with a function cv2.resize() for this purpose. The size of the image can be specified manually, or you can specify the scaling factor. Different interpolation methods are used. Preferable interpolation methods are cv2.INTER_AREA for shrinking and cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR for zooming. By default, interpolation method used is cv2.INTER_LINEAR for all resizing purposes. You can resize an input image either of following methods:

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg')  res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)  #OR  height, width = img.shape[:2] res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) 

            Translation

            Translation is the shifting of object’s location. If you know the shift in (x,y) direction, let it be (t_x,t_y), you can create the transformation matrix \textbf{M} as follows:

            M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y  \end{bmatrix}

            You can take make it into a Numpy array of type np.float32 and pass it into cv2.warpAffine() function. See below example for a shift of (100,50):

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = np.float32([[1,0,100],[0,1,50]]) dst = cv2.warpAffine(img,M,(cols,rows))  cv2.imshow('img',dst) cv2.waitKey(0) cv2.destroyAllWindows() 

            Warning

             

            Third argument of the cv2.warpAffine() function is the size of the output image, which should be in the form of (width, height). Remember width = number of columns, and height = number of rows.

            See the result below:

            Translation

            Rotation

            Rotation of an image for an angle \theta is achieved by the transformation matrix of the form

            M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta   \end{bmatrix}

            But OpenCV provides scaled rotation with adjustable center of rotation so that you can rotate at any location you prefer. Modified transformation matrix is given by

            \begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot center.x -  \beta \cdot center.y \\ - \beta &  \alpha &  \beta \cdot center.x + (1- \alpha )  \cdot center.y \end{bmatrix}

            where:

            \begin{array}{l} \alpha =  scale \cdot \cos \theta , \\ \beta =  scale \cdot \sin \theta \end{array}

            To find this transformation matrix, OpenCV provides a function, cv2.getRotationMatrix2D. Check below example which rotates the image by 90 degree with respect to center without any scaling.

            img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1) dst = cv2.warpAffine(img,M,(cols,rows)) 

            See the result:

            Rotation of Image

            Affine Transformation

            In affine transformation, all parallel lines in the original image will still be parallel in the output image. To find the transformation matrix, we need three points from input image and their corresponding locations in output image. Then cv2.getAffineTransform will create a 2x3 matrix which is to be passed to cv2.warpAffine.

            Check below example, and also look at the points I selected (which are marked in Green color):

            img = cv2.imread('drawing.png') rows,cols,ch = img.shape  pts1 = np.float32([[50,50],[200,50],[50,200]]) pts2 = np.float32([[10,100],[200,50],[100,250]])  M = cv2.getAffineTransform(pts1,pts2)  dst = cv2.warpAffine(img,M,(cols,rows))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            See the result:

            Affine Transformation

            Perspective Transformation

            For perspective transformation, you need a 3x3 transformation matrix. Straight lines will remain straight even after the transformation. To find this transformation matrix, you need 4 points on the input image and corresponding points on the output image. Among these 4 points, 3 of them should not be collinear. Then transformation matrix can be found by the function cv2.getPerspectiveTransform. Then apply cv2.warpPerspective with this 3x3 transformation matrix.

            See the code below:

            img = cv2.imread('sudokusmall.png') rows,cols,ch = img.shape  pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])  M = cv2.getPerspectiveTransform(pts1,pts2)  dst = cv2.warpPerspective(img,M,(300,300))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            Result:

            Perspective Transformation

            Additional Resources

            1. “Computer Vision: Algorithms and Applications”, Richard Szeliski

            Exercises

            Help and Feedback

            You did not find what you were looking for?
            • Ask a question on the Q&A forum.
            • If you think something is missing or wrong in the documentation, please file a bug report.

            posted on 2017-10-12 15:28 zmj 閱讀(743) 評論(0)  編輯 收藏 引用

            观看 国产综合久久久久鬼色 欧美 亚洲 一区二区 | 一本大道久久东京热无码AV| 蜜臀久久99精品久久久久久| 中文精品久久久久人妻不卡| 久久精品成人国产午夜| 久久亚洲精品国产亚洲老地址 | 一本色道久久综合| 九九精品99久久久香蕉| 久久人人爽人爽人人爽av| 精品熟女少妇AV免费久久| 欧美日韩精品久久久久| 国产综合精品久久亚洲| 国产偷久久久精品专区| 久久WWW免费人成—看片| 天堂久久天堂AV色综合| 久久人人爽人人爽人人片AV东京热| 亚洲国产精品一区二区久久hs| 久久精品国产亚洲一区二区三区| 久久精品亚洲日本波多野结衣 | 久久精品人人做人人爽97| 亚洲成av人片不卡无码久久| 日韩精品久久久久久| 久久综合综合久久狠狠狠97色88| 人妻无码久久一区二区三区免费| 欧美噜噜久久久XXX| 久久婷婷人人澡人人爽人人爱| 久久久久亚洲AV成人网人人软件| 99久久成人18免费网站| 久久精品人妻一区二区三区| 精品国产一区二区三区久久| 久久国产亚洲高清观看| 狠狠色婷婷久久一区二区三区| 精品久久久无码21p发布| 午夜精品久久久久| 久久伊人五月丁香狠狠色| 久久久久免费看成人影片| 欧美精品国产综合久久| 久久人妻少妇嫩草AV蜜桃| 婷婷伊人久久大香线蕉AV| 伊人色综合久久天天人手人婷| 亚洲国产另类久久久精品小说|