• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Geometric Transformations of Images

            https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html

            Goals

            • Learn to apply different geometric transformation to images like translation, rotation, affine transformation etc.
            • You will see these functions: cv2.getPerspectiveTransform

            Transformations

            OpenCV provides two transformation functions, cv2.warpAffine and cv2.warpPerspective, with which you can have all kinds of transformations. cv2.warpAffine takes a 2x3 transformation matrix while cv2.warpPerspective takes a 3x3 transformation matrix as input.

            Scaling

            Scaling is just resizing of the image. OpenCV comes with a function cv2.resize() for this purpose. The size of the image can be specified manually, or you can specify the scaling factor. Different interpolation methods are used. Preferable interpolation methods are cv2.INTER_AREA for shrinking and cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR for zooming. By default, interpolation method used is cv2.INTER_LINEAR for all resizing purposes. You can resize an input image either of following methods:

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg')  res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)  #OR  height, width = img.shape[:2] res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) 

            Translation

            Translation is the shifting of object’s location. If you know the shift in (x,y) direction, let it be (t_x,t_y), you can create the transformation matrix \textbf{M} as follows:

            M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y  \end{bmatrix}

            You can take make it into a Numpy array of type np.float32 and pass it into cv2.warpAffine() function. See below example for a shift of (100,50):

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = np.float32([[1,0,100],[0,1,50]]) dst = cv2.warpAffine(img,M,(cols,rows))  cv2.imshow('img',dst) cv2.waitKey(0) cv2.destroyAllWindows() 

            Warning

             

            Third argument of the cv2.warpAffine() function is the size of the output image, which should be in the form of (width, height). Remember width = number of columns, and height = number of rows.

            See the result below:

            Translation

            Rotation

            Rotation of an image for an angle \theta is achieved by the transformation matrix of the form

            M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta   \end{bmatrix}

            But OpenCV provides scaled rotation with adjustable center of rotation so that you can rotate at any location you prefer. Modified transformation matrix is given by

            \begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot center.x -  \beta \cdot center.y \\ - \beta &  \alpha &  \beta \cdot center.x + (1- \alpha )  \cdot center.y \end{bmatrix}

            where:

            \begin{array}{l} \alpha =  scale \cdot \cos \theta , \\ \beta =  scale \cdot \sin \theta \end{array}

            To find this transformation matrix, OpenCV provides a function, cv2.getRotationMatrix2D. Check below example which rotates the image by 90 degree with respect to center without any scaling.

            img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1) dst = cv2.warpAffine(img,M,(cols,rows)) 

            See the result:

            Rotation of Image

            Affine Transformation

            In affine transformation, all parallel lines in the original image will still be parallel in the output image. To find the transformation matrix, we need three points from input image and their corresponding locations in output image. Then cv2.getAffineTransform will create a 2x3 matrix which is to be passed to cv2.warpAffine.

            Check below example, and also look at the points I selected (which are marked in Green color):

            img = cv2.imread('drawing.png') rows,cols,ch = img.shape  pts1 = np.float32([[50,50],[200,50],[50,200]]) pts2 = np.float32([[10,100],[200,50],[100,250]])  M = cv2.getAffineTransform(pts1,pts2)  dst = cv2.warpAffine(img,M,(cols,rows))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            See the result:

            Affine Transformation

            Perspective Transformation

            For perspective transformation, you need a 3x3 transformation matrix. Straight lines will remain straight even after the transformation. To find this transformation matrix, you need 4 points on the input image and corresponding points on the output image. Among these 4 points, 3 of them should not be collinear. Then transformation matrix can be found by the function cv2.getPerspectiveTransform. Then apply cv2.warpPerspective with this 3x3 transformation matrix.

            See the code below:

            img = cv2.imread('sudokusmall.png') rows,cols,ch = img.shape  pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])  M = cv2.getPerspectiveTransform(pts1,pts2)  dst = cv2.warpPerspective(img,M,(300,300))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            Result:

            Perspective Transformation

            Additional Resources

            1. “Computer Vision: Algorithms and Applications”, Richard Szeliski

            Exercises

            Help and Feedback

            You did not find what you were looking for?
            • Ask a question on the Q&A forum.
            • If you think something is missing or wrong in the documentation, please file a bug report.

            posted on 2017-10-12 15:28 zmj 閱讀(740) 評論(0)  編輯 收藏 引用

            狠狠精品久久久无码中文字幕| 久久99久久99精品免视看动漫| 久久久国产乱子伦精品作者| 久久av无码专区亚洲av桃花岛| 久久综合亚洲欧美成人| 91精品国产91久久久久久蜜臀| 欧美久久天天综合香蕉伊| 久久久久亚洲精品日久生情| 九九99精品久久久久久| 亚洲国产精品成人久久蜜臀| 国产精品一区二区久久精品| 亚洲精品WWW久久久久久| 久久久久99精品成人片直播| 久久综合亚洲色HEZYO国产| 国产精品对白刺激久久久| 久久99这里只有精品国产| 亚洲国产精品久久久久网站| 精品一二三区久久aaa片| 久久久久一本毛久久久| 亚洲午夜精品久久久久久人妖| 亚洲中文字幕无码一久久区| 久久综合狠狠综合久久97色| 久久青青草原国产精品免费| 久久精品国产亚洲av水果派| 久久国产劲爆AV内射—百度| 久久se精品一区二区影院| 久久久中文字幕| 久久99精品久久久久久| 久久国产精品99精品国产| 色狠狠久久AV五月综合| 99久久国产综合精品女同图片| 久久夜色撩人精品国产小说| 久久av高潮av无码av喷吹| 久久这里只精品国产99热| 久久狠狠色狠狠色综合| 久久精品aⅴ无码中文字字幕不卡 久久精品aⅴ无码中文字字幕重口 | 欧美久久久久久| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 99久久国产热无码精品免费久久久久| 久久久国产乱子伦精品作者| 久久人妻少妇嫩草AV无码专区|