• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            Geometric Transformations of Images

            https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html

            Goals

            • Learn to apply different geometric transformation to images like translation, rotation, affine transformation etc.
            • You will see these functions: cv2.getPerspectiveTransform

            Transformations

            OpenCV provides two transformation functions, cv2.warpAffine and cv2.warpPerspective, with which you can have all kinds of transformations. cv2.warpAffine takes a 2x3 transformation matrix while cv2.warpPerspective takes a 3x3 transformation matrix as input.

            Scaling

            Scaling is just resizing of the image. OpenCV comes with a function cv2.resize() for this purpose. The size of the image can be specified manually, or you can specify the scaling factor. Different interpolation methods are used. Preferable interpolation methods are cv2.INTER_AREA for shrinking and cv2.INTER_CUBIC (slow) & cv2.INTER_LINEAR for zooming. By default, interpolation method used is cv2.INTER_LINEAR for all resizing purposes. You can resize an input image either of following methods:

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg')  res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)  #OR  height, width = img.shape[:2] res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC) 

            Translation

            Translation is the shifting of object’s location. If you know the shift in (x,y) direction, let it be (t_x,t_y), you can create the transformation matrix \textbf{M} as follows:

            M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y  \end{bmatrix}

            You can take make it into a Numpy array of type np.float32 and pass it into cv2.warpAffine() function. See below example for a shift of (100,50):

            import cv2 import numpy as np  img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = np.float32([[1,0,100],[0,1,50]]) dst = cv2.warpAffine(img,M,(cols,rows))  cv2.imshow('img',dst) cv2.waitKey(0) cv2.destroyAllWindows() 

            Warning

             

            Third argument of the cv2.warpAffine() function is the size of the output image, which should be in the form of (width, height). Remember width = number of columns, and height = number of rows.

            See the result below:

            Translation

            Rotation

            Rotation of an image for an angle \theta is achieved by the transformation matrix of the form

            M = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta   \end{bmatrix}

            But OpenCV provides scaled rotation with adjustable center of rotation so that you can rotate at any location you prefer. Modified transformation matrix is given by

            \begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot center.x -  \beta \cdot center.y \\ - \beta &  \alpha &  \beta \cdot center.x + (1- \alpha )  \cdot center.y \end{bmatrix}

            where:

            \begin{array}{l} \alpha =  scale \cdot \cos \theta , \\ \beta =  scale \cdot \sin \theta \end{array}

            To find this transformation matrix, OpenCV provides a function, cv2.getRotationMatrix2D. Check below example which rotates the image by 90 degree with respect to center without any scaling.

            img = cv2.imread('messi5.jpg',0) rows,cols = img.shape  M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1) dst = cv2.warpAffine(img,M,(cols,rows)) 

            See the result:

            Rotation of Image

            Affine Transformation

            In affine transformation, all parallel lines in the original image will still be parallel in the output image. To find the transformation matrix, we need three points from input image and their corresponding locations in output image. Then cv2.getAffineTransform will create a 2x3 matrix which is to be passed to cv2.warpAffine.

            Check below example, and also look at the points I selected (which are marked in Green color):

            img = cv2.imread('drawing.png') rows,cols,ch = img.shape  pts1 = np.float32([[50,50],[200,50],[50,200]]) pts2 = np.float32([[10,100],[200,50],[100,250]])  M = cv2.getAffineTransform(pts1,pts2)  dst = cv2.warpAffine(img,M,(cols,rows))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            See the result:

            Affine Transformation

            Perspective Transformation

            For perspective transformation, you need a 3x3 transformation matrix. Straight lines will remain straight even after the transformation. To find this transformation matrix, you need 4 points on the input image and corresponding points on the output image. Among these 4 points, 3 of them should not be collinear. Then transformation matrix can be found by the function cv2.getPerspectiveTransform. Then apply cv2.warpPerspective with this 3x3 transformation matrix.

            See the code below:

            img = cv2.imread('sudokusmall.png') rows,cols,ch = img.shape  pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])  M = cv2.getPerspectiveTransform(pts1,pts2)  dst = cv2.warpPerspective(img,M,(300,300))  plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show() 

            Result:

            Perspective Transformation

            Additional Resources

            1. “Computer Vision: Algorithms and Applications”, Richard Szeliski

            Exercises

            Help and Feedback

            You did not find what you were looking for?
            • Ask a question on the Q&A forum.
            • If you think something is missing or wrong in the documentation, please file a bug report.

            posted on 2017-10-12 15:28 zmj 閱讀(743) 評論(0)  編輯 收藏 引用

            99久久婷婷国产综合精品草原| 91久久精品国产成人久久| 久久伊人五月丁香狠狠色| 精品久久人人爽天天玩人人妻| 亚洲人成伊人成综合网久久久 | 狠狠色丁香婷综合久久| 久久影视国产亚洲| 久久久久无码精品国产| 久久久久亚洲精品无码网址| 久久久久亚洲精品无码蜜桃| 久久久久久无码国产精品中文字幕 | 伊人久久成人成综合网222| 激情伊人五月天久久综合| 久久久久久国产精品免费免费 | 狠狠色丁香久久婷婷综| 少妇无套内谢久久久久| 一本色道久久88加勒比—综合| 久久久www免费人成精品| 久久久久亚洲AV无码专区桃色| 2021久久精品国产99国产精品| 色婷婷噜噜久久国产精品12p | 国产午夜精品久久久久九九| 久久综合给久久狠狠97色| 久久无码AV一区二区三区| 99久久精品免费看国产一区二区三区 | 国产精品中文久久久久久久| 欧美一区二区精品久久| 国产偷久久久精品专区| 久久久久国产精品三级网 | 91精品国产高清久久久久久91| 中文字幕久久波多野结衣av| 伊人久久大香线蕉成人| 中文字幕无码av激情不卡久久| 精品国产乱码久久久久久浪潮| 国产精品视频久久久| 国产精品久久久久久| 久久中文字幕一区二区| 亚洲国产成人久久精品影视| 99精品伊人久久久大香线蕉| 久久强奷乱码老熟女网站| 婷婷久久综合九色综合绿巨人|